cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A328004 Expansion of e.g.f. 1 / (1 - Sum_{k>=1} binomial(2*k,k) * x^k / k!).

Original entry on oeis.org

1, 2, 14, 140, 1854, 30692, 609812, 14135816, 374486782, 11161030388, 369597971484, 13463177200376, 535000400076660, 23031528320070584, 1067766010124118200, 53038672987708575920, 2810204538580052967422, 158202066016882053997204, 9429962256806049820343564
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 01 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(2 - Exp[2 x] BesselI[0, 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[2 k, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(2 - exp(2*x) * (besseli(0,2*x))))) \\ Michel Marcus, Oct 02 2019

Formula

E.g.f.: 1 / (2 - exp(2*x) * BesselI(0,2*x)).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A000984(k) * a(n-k).
a(n) ~ n! / ((4 + 2*exp(2*r)*BesselI(1, 2*r)) * r^(n+1)), where r = 0.30197758068953447339121214393882523964817455046976015309132... is the root of the equation exp(2*r) * BesselI(0, 2*r) = 2. - Vaclav Kotesovec, Oct 02 2019

A308848 Expansion of e.g.f. exp(-x) / BesselI(0,2*x).

Original entry on oeis.org

1, -1, -1, 5, 7, -71, -139, 2071, 5335, -103207, -331511, 7853251, 30256381, -847377805, -3808492297, 123081031165, 632196102455, -23155450005175, -133802756269735, 5477371955388355, 35167483918412257, -1591161899246627297, -11237664710770159597, 556875003328690925825, 4290500676272573740429
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 28 2019

Keywords

Comments

E.g.f. is inverse of e.g.f. for A002426 (central trinomial coefficients).

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[Exp[-x]/BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n, k] 3^k Hypergeometric2F1[1/2, -k, 1, 4/3] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(-x) / besseli(0,2*x))) \\ Michel Marcus, Jul 02 2019

Formula

E.g.f.: 1 / Sum_{k>=0} A002426(k)*x^k/k!.

A308850 Expansion of e.g.f. exp(-2*x) / (BesselI(0,2*x) + BesselI(1,2*x)).

Original entry on oeis.org

1, -3, 8, -17, 18, 58, -364, 369, 6194, -37382, -28848, 1717274, -8592644, -47472804, 918146560, -2911313551, -61122074382, 806675821162, 46813084592, -105331573943466, 1018198168087636, 6417696715221572, -247555432672498872, 1535509971584425358, 34028097257000628028, -764203552200012087252
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 28 2019

Keywords

Comments

E.g.f. is inverse of e.g.f. for A001700.

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[-2 x]/(BesselI[0, 2 x] + BesselI[1, 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n, k] Binomial[2 k + 1, k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]

Formula

E.g.f.: 1 / Sum_{k>=0} binomial(2*k+1,k+1)*x^k/k!.
Showing 1-3 of 3 results.