A308851 Numbers >= 2 all of whose divisors > 1 are Brazilian.
7, 13, 31, 43, 73, 91, 127, 157, 211, 217, 241, 301, 307, 403, 421, 463, 511, 559, 601, 757, 889, 949, 1093, 1099, 1123, 1333, 1477, 1483, 1651, 1687, 1723, 2041, 2149, 2263, 2551, 2743, 2801, 2821, 2947, 2971, 3133, 3139, 3241, 3307, 3541, 3907, 3913, 3937
Offset: 1
Keywords
Examples
91 is a term because all divisors of 91 that are > 1: {7, 13, 91} are Brazilian numbers with 7 = 111_2, 13 = 111_3 and 91 = 77_12.
Links
Crossrefs
Programs
-
Mathematica
brazQ[n_] := Block[{k, b, ok}, If[FindInstance[k (1 + b) == n && 1 < b < n - 1 && 0 < k < b, {k, b}, Integers] != {}, True, b = 2; ok = False; While[1 + b + b^2 <= n && ! ok, ok = Length@ Union@ IntegerDigits[n, b++] == 1]; ok]]; Select[ Range[3, 4000, 2], AllTrue[ Rest@ Divisors@ #, brazQ] &] (* Giovanni Resta, Jun 29 2019 *) max = 5000; fQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; A125134 = Select[Range[4, max], fQ]; Select[Range[2, max], Intersection[A125134, Rest[Divisors[#]]] == Rest[Divisors[#]] &] (* Vaclav Kotesovec, Jun 29 2019, using a subroutine from T. D. Noe *)
-
PARI
isb(n) = for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), return(1))); isok(n) = {fordiv(n, d, if ((d>1) && ! isb(d), return (0));); return (1);} \\ Michel Marcus, Jun 29 2019
Comments