A308852 Minimum number k such that the k-th tetrahedral number is not smaller than n!.
1, 2, 3, 5, 8, 16, 31, 62, 129, 279, 621, 1421, 3343, 8057, 19870, 50071, 128747, 337414, 900358, 2443947, 6742667, 18893218, 53729800, 154983562, 453174686, 1342528227, 4027584682, 12230119228, 37574801086, 116753643340, 366767636286, 1164414663338, 3734900007009
Offset: 1
Keywords
Examples
The minimum tetrahedral number not smaller than 4! is 35 (i.e., the 5th tetrahedral number), so a(4) = 5. The minimum tetrahedral number not smaller (equal, in fact) than 5! is 120 (i.e., the 8th tetrahedral number), so a(5) = 8.
Crossrefs
Programs
-
Mathematica
Floor[(6 Range[33]!)^(1/3)] (* Giovanni Resta, Jul 30 2019 *)
-
PARI
a(n) = {my(k=1); while (k*(k+1)*(k+2)/6 < n!, k++); k;} \\ Michel Marcus, Jun 28 2019
Formula
a(n) = ceiling((sqrt(3) * sqrt(243*(n!)^2 - 1) + 27*n!)^(1/3) / 3^(2/3) + 1/(3^(1/3) * (sqrt(3) * sqrt(243*(n!)^2 - 1) + 27*n!)^(1/3)) - 1). - Daniel Suteu, Jun 30 2019
a(n) = floor((6*n!)^(1/3)). - Giovanni Resta, Jul 30 2019
Extensions
a(26)-a(33) from Daniel Suteu, Jun 30 2019
Comments