A308915 Decimal expansion of Sum_{n>=1} 1/(log(n)^log(n)).
6, 7, 1, 6, 9, 7, 0, 6, 1, 2, 9, 9, 0, 8, 9, 6, 0, 8, 8, 1, 4, 4, 5, 7, 9, 9, 8, 7, 2, 3, 2, 6, 0, 8, 8, 9, 1, 4, 5, 2, 7, 7, 2, 6, 1, 6, 5, 8, 8, 4, 5, 0, 4, 5, 8, 2, 6, 7, 0, 7, 5, 9, 2, 8, 4, 0, 5, 2, 4, 0, 2, 1, 8, 0, 6, 9, 3, 2, 5, 0, 9, 4, 3, 3, 5, 1, 1, 0, 0, 1, 8, 7, 5, 7, 2, 7, 6, 4, 2
Offset: 1
Examples
6.71697061299089608814457...
References
- Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.1.i p. 279.
Programs
-
Maple
evalf(sum(1/(log(n)^log(n)), n=1..infinity), 110);
-
Mathematica
RealDigits[N[1 + Sum[1/Log[n]^Log[n], {n, 2, Infinity}], 100]][[1]] (* Jinyuan Wang, Jul 25 2019 *)
-
PARI
1 + sumpos(n=2, 1/(log(n)^log(n))) \\ Michel Marcus, Jun 30 2019
Formula
Equals Sum_{n>=1} 1/(log(n)^log(n)).
Extensions
More terms from Jon E. Schoenfield, Jun 30 2019
a(16)-a(24) from Jinyuan Wang, Jul 10 2019
More terms from Charles R Greathouse IV, Oct 21 2021
Comments