cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308925 Sum of the largest parts in the partitions of n into 6 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 8, 8, 15, 20, 17, 24, 35, 42, 50, 66, 61, 92, 102, 122, 129, 180, 150, 237, 233, 296, 260, 370, 300, 463, 398, 521, 467, 708, 527, 845, 667, 935, 768, 1158, 839, 1372, 1039, 1547, 1233, 1898, 1294, 2217, 1612
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 30 2019

Keywords

Crossrefs

Programs

  • Maple
    N:= proc(m,k,n) option remember;
         local q,t;
         if m = 1 then if k=n and isprime(k) then return 1
           else return 0
         fi fi;
         if m*k < n then return 0 fi;
         t:= 0;
         q:= ceil((n-k)/(m-1))-1;
         do
           q:= nextprime(q);
           if q > min(k, n-k) then return t fi;
           t:= t + procname(m-1,q,n-k)
         od;
    end proc:
    F:= proc(n) local p, q, t;
      p:= ceil(n/6)-1;
      t:= 0;
      do
        p:= nextprime(p);
        if p >= n then return t fi;
        q:= ceil((n-p)/5)-1;
        do
          q:= nextprime(q);
          if q > min(p,n-p) then break fi;
          t:= t + p*N(5,q,n-p);
        od
      od
    end proc:
    map(F, [$0..100]); # Robert Israel, Jul 02 2019
  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[(n - i - j - k - l - m)*(PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[n - i - j - k - l - m] - PrimePi[n - i - j - k - l - m - 1]), {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]

Formula

a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m) * (n-i-j-k-l-m), where c = A010051.
a(n) = A308919(n) - A308920(n) - A308921(n) - A308922(n) - A308923(n) - A308924(n).