A308955 Sum of the sixth largest parts in the partitions of n into 7 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 9, 11, 14, 17, 25, 29, 39, 43, 58, 67, 85, 93, 120, 136, 168, 185, 229, 255, 311, 342, 414, 459, 547, 593, 711, 782, 911, 987, 1159, 1270, 1467, 1580, 1823, 1990, 2276, 2441, 2799, 3035, 3435, 3686, 4177, 4505, 5062
Offset: 0
Keywords
Programs
-
Mathematica
Table[Sum[Sum[Sum[Sum[Sum[Sum[m * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o]^2, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}] Table[Total[Select[IntegerPartitions[n,{7}],AllTrue[#,SquareFreeQ]&][[;;,6]]],{n,0,60}] (* Harvey P. Dale, Mar 07 2025 *)
Formula
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o)^2 * m, where mu is the Möbius function (A008683).