A308963 Lerch pseudoprimes: composite numbers m such that Sum_{k=1..m-1} k^{m-1} - (m-1)! == m (mod m^2).
77, 161, 2261, 12839, 14231, 18668831, 1591100357
Offset: 1
Links
- Mathias Lerch, Zur Theorie des Fermatschen Quotienten (a^(p-1)-1)/p = q(a), Mathematische Annalen, Vol. 60, No. 4 (1905), pp. 471-490.
- Jonathan Sondow, Lerch quotients, Lerch primes, Fermat-Wilson quotients, and the Wieferich-non-Wilson primes 2, 3, 14771, In: Nathanson M. (eds) Combinatorial and Additive Number Theory. Springer Proceedings in Mathematics & Statistics, Vol. 101, Springer, New York, NY, 2014, pp. 243-255. Preprint: arXiv:1110.3113 [math.NT].
Programs
-
Mathematica
s={}; Do[If[CompositeQ[n] && Mod[Sum[PowerMod[k, n-1, n^2], {k, 1, n-1}] - (n-1)! - n, n^2] == 0, AppendTo[s, n]],{n,1,2500}] ; s
-
PARI
is_A308963(m)={sum(k=1,m-1,Mod(k,m^2)^(m-1))==m&&!isprime(m)&&m>4} forcomposite(m=1,,is_A308963(m)&&print1(m",")) \\ Slow beyond 10000. - M. F. Hasler, Jul 22 2019
Extensions
a(6)-a(7) from Max Alekseyev, Jul 09 2019
Comments