cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A308985 Expansion of Product_{k>=0} (1 + 2*x^(2^k))^2.

Original entry on oeis.org

1, 4, 8, 16, 24, 32, 48, 64, 88, 96, 128, 128, 176, 192, 256, 256, 344, 352, 448, 384, 512, 512, 640, 512, 688, 704, 896, 768, 1024, 1024, 1280, 1024, 1368, 1376, 1728, 1408, 1856, 1792, 2176, 1536, 2048, 2048, 2560, 2048, 2688, 2560, 3072, 2048, 2736, 2752, 3456
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2019

Keywords

Comments

Self-convolution of A001316.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + 2 x^(2^k))^2, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
    a[n_] := a[n] = Sum[2^(DigitCount[k, 2, 1] + DigitCount[n - k, 2, 1]), {k, 0, n}]; Table[a[n], {n, 0, 50}]

Formula

a(n) = Sum_{k=0..n} 2^(A000120(k)+A000120(n-k)).
a(n) = A001316(n) * Sum_{k=0..n} 2^(A007814(binomial(n,k))).
G.f. A(x) satisfies: A(x) = (1 + 2*x)^2 * A(x^2). - Ilya Gutkovskiy, Jul 09 2019

A309728 G.f. A(x) satisfies: A(x) = A(x^2) / (1 - 2*x).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 132, 264, 558, 1116, 2292, 4584, 9300, 18600, 37464, 74928, 150414, 300828, 602772, 1205544, 2413380, 4826760, 9658104, 19316208, 38641716, 77283432, 154585464, 309170928, 618379320, 1236758640, 2473592208, 4947184416, 9894519246, 19789038492, 39578377812
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 14 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 34; A[] = 1; Do[A[x] = A[x^2]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 34; CoefficientList[Series[Product[1/(1 - 2 x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
  • PARI
    seq(n)=Vec(1/prod(k=0, logint(n,2), 1 - 2*x^(2^k) + O(x*x^n))) \\ Andrew Howroyd, Aug 14 2019

Formula

G.f.: Product_{k>=0} 1/(1 - 2*x^(2^k)).
Showing 1-2 of 2 results.