A308987 In the sequence {n^2+1} (A002522), color the primes red. When the number of terms m between successive red terms sets a new record, write down m+1.
1, 2, 4, 10, 14, 16, 20, 34, 40, 46, 88, 100, 112, 130, 152, 212, 288, 330, 346, 444, 502, 526, 534, 564, 580, 614, 624, 634, 636, 640, 690
Offset: 1
Examples
n=6 --> 6^2+1 = 37, prime n=7 --> 7^2+1 = 50, composite n=8 --> 8^2+1 = 65, composite n=9 --> 9^2+1 = 82, composite n=10 --> 10^2+1 = 101, prime ...so here m=3 and we get the third term, m + 1 = 10 - 6 = 4
Programs
-
Mathematica
best = c = lastBestAt = 0; For[i = 2, True, i += 2; c += 2, If[PrimeQ[i^2 + 1], If[c > best, best = c; bestAt = i - c; If[bestAt != lastBestAt, Print[{c, bestAt}]]; lastBestAt = bestAt; ]; c = 0; ] ] Join[{1,2},Rest[DeleteDuplicates[Length/@SplitBy[(Range[5*10^7]^2+1),PrimeQ],GreaterEqual]+1]] (* The program generates the first 19 terms of the sequence. *)(* Harvey P. Dale, Sep 27 2024 *)
Extensions
a(21)-a(31) from Giovanni Resta, Jul 05 2019
Comments