A309004 The number of numbers with the same prime signature and set of distinct prime factors as n (including n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1
Keywords
Examples
a(12) = a(18) = 2 since 12 = 2^2 * 3 and 18 = 3^2 * 2 have the same prime signature, (2, 1), and the same set of distinct prime factors, {2, 3}. a(60) = a(90) = a(150) = 3 since 60 = 2^2 * 3 * 5, 90 = 3^2 * 2 * 5, and 150 = 5^2 * 2 * 3 have the same prime signature, (2, 1, 1), and the same set of distinct prime factors, {2, 3, 5}.
Links
Crossrefs
Programs
-
Mathematica
a[n_] := Multinomial @@ Tally[FactorInteger[n][[;;,2]]][[;;,2]]; Array[a, 100]
-
PARI
A008480(n) = { my(es=factor(n)[, 2], s=vecsum(es)); s!/prod(i=1, #es, es[i]!); }; A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2]))); A309004(n) = A008480(A181819(n)); \\ Antti Karttunen, Sep 27 2019
Formula
Extensions
More terms from Antti Karttunen, Sep 27 2019
Comments