cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309004 The number of numbers with the same prime signature and set of distinct prime factors as n (including n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 22 2019

Keywords

Comments

The number of permutations of the exponents in the prime signature of n.
The number of terms in the n-th row of A111470.

Examples

			a(12) = a(18) = 2 since 12 = 2^2 * 3 and 18 = 3^2 * 2 have the same prime signature, (2, 1), and the same set of distinct prime factors, {2, 3}.
a(60) = a(90) = a(150) = 3 since 60 = 2^2 * 3 * 5, 90 = 3^2 * 2 * 5, and 150 = 5^2 * 2 * 3 have the same prime signature, (2, 1, 1), and the same set of distinct prime factors, {2, 3, 5}.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Multinomial @@ Tally[FactorInteger[n][[;;,2]]][[;;,2]]; Array[a, 100]
  • PARI
    A008480(n) = { my(es=factor(n)[, 2], s=vecsum(es)); s!/prod(i=1, #es, es[i]!); };
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A309004(n) = A008480(A181819(n)); \\ Antti Karttunen, Sep 27 2019

Formula

a(n) = 1 if and only if n is a power of a squarefree number (A072774).
a(A088860(k)) = k.
a(A006939(k)) = A000142(k) = k!.
a(n) = A008480(A181819(n)). - Antti Karttunen, Sep 27 2019

Extensions

More terms from Antti Karttunen, Sep 27 2019