A309016 Superior 2-highly composite numbers: 3-smooth numbers (A003586) k for which there is a real number e > 0 such that d(k)/k^e >= d(j)/j^e for all 3-smooth numbers j, where d(k) is the number of divisors of k (A000005).
1, 2, 6, 12, 24, 72, 144, 288, 864, 1728, 5184, 10368, 20736, 62208, 124416, 373248, 746496, 1492992, 4478976, 8957952, 26873856, 53747712, 107495424, 322486272, 644972544, 1289945088, 3869835264, 7739670528, 23219011584, 46438023168, 92876046336, 278628139008, 557256278016
Offset: 1
Keywords
Examples
From _Michael De Vlieger_, Jul 12 2019: (Start) We can plot all terms in A003586 with the power range 2^x with x >= 0 and 3^y with y >= 0 on the x and y axis, respectively. Plot of terms m in A309015, with terms also in a(n) placed in brackets: 2^x 0 1 2 3 4 5 6 7 8 +----------------------------------------------------- 0 |[1] [2] 4 1 | [6] [12] [24] 48 3^y 2 | 36 [72] [144] [288] 576 3 | 216 432 [864] [1728] 3456 6912 ... ... Larger scale plot with "." representing a term m in A309015, and "o" representing a term in A309015 also in a(n) for all m < A002110(20). 2^x 0 5 10 15 20 25 30 35 40 45 ... +------------------------------------------------ 0|oo. | ooo. | .ooo. | ..oo.. | ..ooo.. 5| ..oo... | ..ooo... | ..oo.... | ..ooo.... | ..ooo.... 10| ...oo..... | ..ooo.... | ...oo..... | ..ooo..... 3^y | ...ooo.... 15| ...oo..... | ...ooo..... | ...oo..... | ...ooo..... | ...oo...... 20| ...ooo..... | ...ooo..... | ....oo...... | ...ooo..... | ....oo...... 25| ...ooo...... | ....ooo.... | ....oo. | ....o | . ... (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..2709
- Gérard Bessi, Etude des nombres 2-hautement composés, Séminaire de Théorie des nombres de Bordeaux, Vol. 4 (1975), pp. 1-22.
- Michael De Vlieger, Factors p analogous to A000705 such that the product of the smallest n terms equals a(n + 1) (10^5 terms).
Programs
-
Mathematica
f[nn_, k_: 2] := Block[{w = {{2, 1}, {3, 0}}, s = {2}, P = 1, q = k - 2, x, i, n, f}, f[w_List] := Log[#1, (#2 + 2)/(#2 + 1)] & @@ w; x = Array[f[w[[#]] ] &, P + 1]; For[n = 2, n <= nn, n++, i = First@ FirstPosition[x, Max[x]]; AppendTo[s, w[[i, 1]]]; w[[i, 2]]++; If[And[i > P, P <= q], P++; AppendTo[w, {Prime[i + 1], 0}]; AppendTo[x, f[Last@ w]]]; x[[i]] = f@ w[[i]] ]; s]; {1}~Join~FoldList[Times, f[32, 2]] (* Michael De Vlieger, Jul 11 2019, after T. D. Noe at A000705 *)
Extensions
More terms from Michael De Vlieger, Jul 11 2019
Comments