cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A309055 Record values of A309036.

Original entry on oeis.org

2, 17, 20, 43, 107, 142, 176, 1291, 1748, 3309, 5114, 9412, 13032, 53799, 62195, 258834, 515752, 590919, 1880056, 4387977, 4982469, 8725487, 10021836, 22701799, 34769113, 75672055, 3847032954, 6476460401, 8607624876, 13054048917, 40404144055, 55300901872
Offset: 1

Views

Author

Robert Israel, Jul 09 2019

Keywords

Examples

			a(3) = 20 is a term because A309036(25) = 20 and A309036(k) < 20 for k < 25.
		

Crossrefs

Programs

  • Maple
    S1:= 0: S2:= 0: Recv:= NULL: count:= 0:
    maxv:= 0:
    for n from 1 to 200000 do
      p:= ithprime(n);
      S1:= S1 + p;
      S2:= S2 + n*p;
      v:= igcd(S1, S2);
      if v > maxv then
        maxv:= v;
        count:= count+1;
        Recv:= Recv,v;
      fi
    od:
    Recv;
  • PARI
    lista(nn) = {my(k=r=s=t=0); forprime(p=2, nn, if(gcd(s+=p, t+=(k++)*p)>r, r=gcd(s,t); print1(r, ", "))); } \\ Jinyuan Wang, Apr 16 2020

Formula

a(n) = A309036(A309056(n)).

Extensions

a(16)-a(27) from Rémy Sigrist, Jul 09 2019
a(28) from Jinyuan Wang, Apr 16 2020
Terms a(29) and beyond from Giovanni Resta, Apr 19 2020

A309056 Where records of A309036 occur.

Original entry on oeis.org

1, 4, 25, 26, 43, 77, 201, 336, 881, 2144, 22305, 24113, 44349, 48748, 153884, 400161, 793873, 1195455, 5066329, 6227954, 11394871, 16233979, 18368369, 63843903, 80998288, 117335658, 246252769, 6420049930, 23198011949, 30432298548, 62709861290, 117888644809
Offset: 1

Views

Author

Robert Israel, Jul 09 2019

Keywords

Comments

Numbers m such that A309036(m) > A309036(k) for all k < m.

Examples

			a(3) = 25 is a term because A309036(25) = 20 and A309036(k) < 20 for k < 25.
		

Crossrefs

Programs

  • Maple
    S1:= 0: S2:= 0: Recn:= NULL: count:= 0:
    maxv:= 0:
    for n from 1 to 200000 do
      p:= ithprime(n);
      S1:= S1 + p;
      S2:= S2 + n*p;
      v:= igcd(S1, S2);
      if v > maxv then
        maxv:= v;
        count:= count+1;
        Recn:= Recn, n;
      fi
    od:
    Recn;
  • PARI
    lista(nn) = {my(k=r=s=t=0); forprime(p=2, nn, if(gcd(s+=p, t+=(k++)*p)>r, r=gcd(s,t); print1(k, ", "))); } \\ Jinyuan Wang, Apr 16 2020

Formula

A309055(n) = A309036(a(n)).

Extensions

a(16)-a(27) from Rémy Sigrist, Jul 09 2019
a(28) from Jinyuan Wang, Apr 16 2020
Terms a(29) and beyond from Giovanni Resta, Apr 19 2020

A307414 Numbers k such that A014285(k) and A007504(k) are coprime.

Original entry on oeis.org

2, 3, 6, 7, 10, 11, 12, 14, 15, 18, 19, 22, 23, 24, 27, 30, 31, 32, 34, 35, 38, 39, 40, 44, 46, 47, 48, 51, 52, 55, 56, 58, 59, 60, 63, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 92, 94, 95, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114, 115, 116, 118, 119, 120, 122
Offset: 1

Views

Author

Robert Israel, Apr 07 2019

Keywords

Comments

Numbers k such that A306834(k) = A014285(k).
No terms == 1 (mod 4).
Numbers k such that A309036(k)=1. - Robert Israel, Jul 09 2019

Examples

			a(3) = 6 is a term because A007504(6) = 41 and A014285(6) = 184 are coprime.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    Primes:= map(ithprime, [$1..N]):
    S1:= ListTools:-PartialSums(Primes):
    S2:= ListTools:-PartialSums(zip(`*`,Primes, [$1..N])):
    select(t -> igcd(S1[t],S2[t])=1, [$1..N]);
  • Mathematica
    okQ[n_] := With[{pp = Prime[Range[n]]}, CoprimeQ[Total[pp], Total[pp.Range[n]]]];
    Select[Range[200], okQ] (* Jean-François Alcover, Dec 05 2023 *)
  • PARI
    isok(k) = my(vp=primes(k)); gcd(sum(i=1, k, vp[i]), sum(i=1, k, i*vp[i])) == 1; \\ Michel Marcus, Apr 07 2019
Showing 1-3 of 3 results.