A309062 Oblong numbers that are repdigits with length > 2 in more than two bases.
61035156, 641431602, 38146972656, 70607384120, 953674316406, 5824521280620, 23841857910156, 51472783023662, 145655559307440, 463255047212960, 1838956877846660, 14901161193847656, 37523658824249780, 88453695801367260, 166354152295794960, 416972378738246240
Offset: 1
Examples
From _Bernard Schott_, Jul 18 2019: (Start) a(1) = 61035156 = 7812*7813 = 111111111111_5 = 666666_25 = (31,31,31)_125 = (156,156,156)_625. a(2) = 641431602 = 25326*25327 = 999999_37 = (342,342,342)_1469 = (54,54,54)_3446. (End) a(11) = 1838956877846660 = 42883060*42883061 = 555555555555_21 = (110, 110, 110, 110, 110, 110)_441 = (2315, 2315, 2315, 2315)_9261 = (48620, 48620, 48620)_194481. - _Chai Wah Wu_, Jul 24 2019
Links
- Giovanni Resta, Table of n, a(n) for n = 1..26
Crossrefs
Programs
-
PARI
isoblong(n) = my(m=sqrtint(n)); m*(m+1)==n; \\ A002378 okrepu3(b, target, lim) = {my(k = 3, nb = 0, x); while ((x=(b^k-1)/(b-1)) <= target, if (x==target, nb++); k++); nb;} dge3(n) = {my(d=divisors(n), nb=0, ndi, limi); for (i=1, #d, ndi = n/d[i]; limi = sqrtint(ndi); for (k=d[i]+1, limi, nb += okrepu3(k, ndi, limi););); nb;} isok(n) = isoblong(n) && (dge3(n) >= 3);
Extensions
a(11) from Chai Wah Wu, Jul 21 2019
a(12)-a(16) from Giovanni Resta, Jul 28 2019
Comments