cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A326382 Numbers m such that beta(m) = tau(m)/2 + 2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

32767, 65535, 67053, 2097151, 4381419, 7174453, 9808617, 13938267, 14348906, 19617234, 21523360, 29425851, 39234468, 43046720, 48686547, 49043085, 58851702, 61035156, 68660319, 71270178, 78468936, 88277553, 98086170, 107894787, 115174101, 117703404, 134217727, 142540356, 175965517
Offset: 1

Views

Author

Bernard Schott, Jul 08 2019

Keywords

Comments

As tau(m) = 2 * (beta(m) - 2) , the terms of this sequence are not squares.
There are 2 subsequences which realize a partition of this sequence (see array in link and examples):
1) Non-oblong composites which have exactly three Brazilian representations with three digits or more, they are in A326389.
2) Oblong numbers that have exactly four Brazilian representations with three digits or more. These integers have been found through b-file of Rémy Sigrist in A290869. These oblong integers are a subsequence of A309062.
There are no primes that satisfy this relation.

Examples

			One example for each type:
1) The divisors of 32767 are {1, 7, 31, 151, 217, 1057, 4681, 32767} and tau(32767) = 8; also, 32767 = M_15 = R(15)_2 = 77777_8 = (31,31,31)_32 = (151,151)_216 = (31,31)_1056 = 77_4680 so beta(32767) = 6 with beta'(32767) = 3 and beta"(32767)= 3. The relation is beta(32767) = tau(32767)/2 + 2 = 6.
2) 61035156 = 7812 * 7813 is oblong with tau(61035156) = 144. The four Brazilian representations with three digits or more are 61035156 = R(12)_5 = 666666_25 = (31,31,31,31)_125 = (156,156,156)_625, so beta"(61035156) = 4 and beta(61035156) = tau(61035156)/2 + 2 = 74.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A167782, A167783 and A290869.
Cf. A326378 (tau(m)/2 - 2), A326379 (tau(m)/2 - 1), A326380 (tau(m)/2), A326381 (tau(m)/2 + 1), this sequence (tau(m)/2 + 2), A326383 (tau(m)/2 + 3).

Extensions

Missing a(18) inserted by Bernard Schott, Jul 20 2019

A326381 Numbers m such that beta(m) = tau(m)/2 + 1 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

31, 63, 255, 273, 364, 511, 546, 728, 777, 931, 1023, 1365, 1464, 2730, 3280, 3549, 3783, 4557, 6560, 7566, 7812, 8191, 9114, 9331, 9841, 10507, 11349, 11718, 13671, 14043, 14763, 15132, 15624, 16383, 18291, 18662, 18915, 19608, 19682, 21845, 22351, 22698
Offset: 1

Views

Author

Bernard Schott, Jul 07 2019

Keywords

Comments

As tau(m) = 2 * (beta(m) - 1), the terms of this sequence are not squares.
There are 3 subsequences which realize a partition of this sequence (see examples):
1) Non-oblong composites which have exactly two Brazilian representations with three digits or more, they form A326388.
2) Oblong numbers that have exactly three Brazilian representations with three digits or more; thanks to Michel Marcus, who found the smallest, 641431602. These oblong integers are a subsequence of A290869 and A309062.
3) The two Brazilian primes 31 and 8191 of the Goormaghtigh conjecture (A119598) for which beta(p) = tau(p)/2 + 1 = 2.

Examples

			One example for each type:
1) 63 = 111111_2 = 333_4 = 77_8 = 33_20 with tau(63) = 6 and beta(63) = 4.
2) 641431602 = 25326 * 25327 is oblong with tau(641431602) = 256. The three Brazilian representations with three digits or more of 641431602 are 999999_37 = (342,342,342)_1369 = (54,54,54)_3446, so beta"(641431602) = 3 and beta(641431602) = tau(641431602)/2 + 1 = 129.
3) 31 = 11111_2 = 111_5 and 8191 = 1111111111111_2 = 11_90 with beta(p) = tau(p)/2 + 1 = 2.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Cf. A119598 (Goormaghtigh conjecture).
Subsequence of A167783.
Cf. A326378 (tau(m)/2 - 2), A326379 (tau(m)/2 - 1), A326380 (tau(m)/2), A326382 (tau(m)/2 + 2), A326383 (tau(m)/2 + 3).

Programs

  • PARI
    beta(n) = sum(i=2, n-2, #vecsort(digits(n, i), , 8)==1); \\ A220136
    isok(n) = beta(n) == numdiv(n)/2 + 1; \\ Michel Marcus, Jul 08 2019

A326385 Oblong numbers m such that beta(m) = tau(m)/2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

3906, 37830, 97656, 132860, 1206702, 2441406, 6034392, 10761680, 21441530, 96855122, 148705830, 203932680, 322866992, 747612306, 871696100, 1187526060, 1525878906, 1743939360, 2075941406, 3460321800, 5541090282, 8574111812, 9455714840, 12880093590, 18854722656
Offset: 1

Views

Author

Bernard Schott, Jul 10 2019

Keywords

Comments

The number of Brazilian representations of an oblong number m with repdigits of length = 2 is beta'(n) = tau(n)/2 - 2.
This sequence is the second subsequence of A326380: oblong numbers that have exactly two Brazilian representations with three digits or more.

Examples

			3906 = 62 * 63 is oblong, tau(3906) = 24, beta(3906) = 12 with beta'(3906) = 10 and beta"(3906) = 2: 3906 = 111111_5 = 666_25 = (42,42)_92 = (31,31)_125 = (21,21)_185 = (18,18)_216 = (14,14)_278 = 99_433 = 77_557 = 66_650 = 33_130 = 22_1952.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A002378 (oblong numbers) and of A167783.
Cf. A326378 (oblongs with tau(m)/2 - 2), A326384 (oblongs with tau(m)/2 - 1), A309062 (oblongs with tau(m)/2 + k, k >= 1).

Extensions

a(6)-a(25) from Giovanni Resta, Jul 11 2019

A326384 Oblong composite numbers m such that beta(m) = tau(m)/2 - 1 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

42, 156, 182, 342, 1406, 1640, 6162, 7140, 14280, 14762, 20880, 25440, 29412, 32942, 33306, 47742, 48620, 49952, 61256, 67860, 95172, 95790, 158802, 176820, 191406, 202950, 209306, 257556, 296480, 297570
Offset: 1

Views

Author

Bernard Schott, Jul 10 2019

Keywords

Comments

The number of Brazilian representations of an oblong number m with repdigits of length = 2 is beta'(n) = tau(n)/2 - 2.
This sequence is the second subsequence of A326379: oblong numbers that have only one Brazilian representation with three digits or more.
Prime 2 is oblong and satisfies also beta(2) = tau(2)/2 - 1 = 0 but non-Brazilian primes are in A220627.

Examples

			There are two types of such numbers:
1) m is repunit with 3 digits or more in only one base:
156 = 12 * 13 = 1111_5 = 66_25 = 44_38 = 33_51 = 22_77 with tau(156) = 12 and beta(156) = 5.
2) m is repdigit with 3 digits or more and digit >= 2 in only one base:
tau(m) = 8 and beta(m) = 3:  42 = 6*7 = 222_4 = 33_13 = 22_20,
tau(m) = 12 and beta(m)= 5:  342 = 18*19 = 666_7 = 99_37 = 66_56 = 33_113 = 22_170,
tau(m) = 16 and beta(m)= 7: 1640 = 40*41 = 2222_9 = (20,20)_81 = (10,10)_2 = 88_204 = 55_327 = 44_409 = 22_819.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A002378 (oblong numbers) and of A167782.
Cf. A326378 (oblongs with tau(m)/2 - 2), A326385 (oblongs with tau(m)/2), A309062 (oblongs with tau(m)/2 + k, k >= 1).

A309193 Smallest oblong number that is a repdigit of length > 2 in exactly n bases.

Original entry on oeis.org

42, 3906, 641431602, 61035156
Offset: 1

Views

Author

Felix Fröhlich, Jul 16 2019

Keywords

Examples

			From _Bernard Schott_, Jul 18 2019: (Start)
a(1) = 42 = 6*7 = 222_4.
a(2) = 3906 = 62*63 = 111111_5 = 666_25.
a(3) = 641431602 = 25326*25327 = 999999_37 = (342,342,342)_1469 = (54,54,54)_3446.
a(4) = 61035156 = 7812*7813 = 111111111111_5 = 666666_25 = (31,31,31)_125 = (156,156,156)_625. (End)
		

Crossrefs

Cf. A002378, A326384 (oblongs repdigits of length > 2 in exactly 1 base), A326385 (oblongs repdigits of length > 2 in exactly 2 bases), A309062 (oblongs repdigits of length > 2 in more than 2 bases).

Programs

  • PARI
    /* Functions isoblong, okrepu3 and dge3 after Michel Marcus in A309062 */
    isoblong(n) = my(m=sqrtint(n)); m*(m+1)==n; \\ A002378
    okrepu3(b, target, lim) = {my(k = 3, nb = 0, x); while ((x=(b^k-1)/(b-1)) <= target, if (x==target, nb++); k++); nb; }
    dge3(n) = {my(d=divisors(n), nb=0, ndi, limi); for (i=1, #d, ndi = n/d[i]; limi = sqrtint(ndi); for (k=d[i]+1, limi, nb += okrepu3(k, ndi, limi); ); ); nb; }
    a(n) = for(k=1, oo, if(isoblong(k), if(dge3(k)==n, return(k))))

A326706 Numbers m such that beta(m) = tau(m)/2 + k for some k >= 4, where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

16777215, 435356467, 1073741823, 68719476735, 1099511627775, 4398046511103, 35184372088831, 281474976710655, 14901161193847656, 18014398509481983
Offset: 1

Views

Author

Bernard Schott, Aug 09 2019

Keywords

Comments

As tau(m) = 2 * (beta(m) - k) is even, the terms of this sequence are not squares.
There are two classes of terms (see array in link and examples):
1) Non-oblong composites which have five or more Brazilian representations with three digits or more, they form a subsequence of A326705. The smallest example is a(1) = 16777215 = M_24.
2) Oblong numbers that have six or more Brazilian representations with three digits or more, they form a subsequence of A309062. The smallest example is a(9) (see 2nd example).
For a(1) to a(10), the numbers k are respectively 5, 4, 5, 6, 5, 5, 4, 7, 4 and 5.
Some Mersenne numbers are terms: M_24 = a(1), M_30 = a(3), M_36 = a(4), M_40 = a(5), M_42 = a(6), M_45 = a(7), M_48 = a(8), M_54 = a(10).

Examples

			One example of each type:
1) Non-oblong with beta"(m) = 5; tau(435356467) = 64 and 435356467 = (6^12 - 1)/5 has exactly five Brazilian representations with three digits or more: R(12)_6 = 777777_36 = (43,43,43)_216 = (259,259,259)_1296 = (31,31,31)_3747 and has 31 representations with 2 digits, so beta(435356467) = 36 and k = 4.
2) Oblong with beta"(m) = 6; tau(14901161193847656) = 768 and 14901161193847656 = (5^24 - 1)/4 = 122070312*122070313 is oblong. The six Brazilian representations with three digits or more of this term are R(24)_5 = 666666666666_25 = (31,31,31,31,31,31,31,31)_125 = (156,156,156,156,156)_625, =(3906,3906,3906,3906)_15625 = (97656,97656,97656)_390625 so beta"(14901161193847656) = 6 and beta(61035156) = (tau(61035156)/2 - 2) + 6 = 388 and k = 4.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A167782, A167783 and A290869.
Cf. A326378 (tau(m)/2 - 2), A326379 (tau(m)/2 - 1), A326380 (tau(m)/2), A326381 (tau(m)/2 + 1), A326382 (tau(m)/2 + 2), A326383 (tau(m)/2 + 3), this sequence (tau(m)/2 + k, k >= 4).
Cf. A291592 (Mersenne numbers).

Programs

  • PARI
    okrepu3(b, target, lim) = {my(k = 3, nb = 0, x); while ((x=(b^k-1)/(b-1)) <= target, if (x==target, nb++); k++); nb; }
    dge3(n, d) = {my(nb=0, ndi, limi); for (i=1, #d, ndi = n/d[i]; limi = sqrtint(ndi); for (k=d[i]+1, limi, nb += okrepu3(k, ndi, limi); ); ); nb; }
    deq2(n, d) = {my(nb=0, nk); for (k=1, #d\2, nk = (n - d[k])/d[k]; if (nk > d[k], nb++); ); nb; }
    beta(n) = {if (n<3, return (0)); my(d=divisors(n)); deq2(n, d) + dge3(n, d) - 1; }
    isok(n) = beta(n) - numdiv(n)/2 > = 4; \\ Michel Marcus, Aug 10 2019
Showing 1-6 of 6 results.