A326382 Numbers m such that beta(m) = tau(m)/2 + 2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.
32767, 65535, 67053, 2097151, 4381419, 7174453, 9808617, 13938267, 14348906, 19617234, 21523360, 29425851, 39234468, 43046720, 48686547, 49043085, 58851702, 61035156, 68660319, 71270178, 78468936, 88277553, 98086170, 107894787, 115174101, 117703404, 134217727, 142540356, 175965517
Offset: 1
Examples
One example for each type: 1) The divisors of 32767 are {1, 7, 31, 151, 217, 1057, 4681, 32767} and tau(32767) = 8; also, 32767 = M_15 = R(15)_2 = 77777_8 = (31,31,31)_32 = (151,151)_216 = (31,31)_1056 = 77_4680 so beta(32767) = 6 with beta'(32767) = 3 and beta"(32767)= 3. The relation is beta(32767) = tau(32767)/2 + 2 = 6. 2) 61035156 = 7812 * 7813 is oblong with tau(61035156) = 144. The four Brazilian representations with three digits or more are 61035156 = R(12)_5 = 666666_25 = (31,31,31,31)_125 = (156,156,156)_625, so beta"(61035156) = 4 and beta(61035156) = tau(61035156)/2 + 2 = 74.
Links
Crossrefs
Extensions
Missing a(18) inserted by Bernard Schott, Jul 20 2019
Comments