cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A326380 Numbers m such that beta(m) = tau(m)/2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

7, 13, 15, 21, 26, 40, 43, 57, 62, 73, 80, 85, 86, 91, 93, 111, 114, 124, 127, 129, 133, 146, 157, 170, 171, 172, 183, 211, 215, 219, 222, 228, 241, 242, 259, 266, 285, 292, 307, 312, 314, 333, 341, 343, 365, 366, 381, 399, 421, 422, 438, 444, 455, 463, 468, 471, 482, 507, 518, 532, 549, 553, 555, 585, 601, 614, 624
Offset: 1

Views

Author

Bernard Schott, Jul 03 2019

Keywords

Comments

As tau(m) = 2 * beta(m), the terms of this sequence are not squares. Indeed, there are 3 subsequences which realize a partition of this sequence (see examples):
1) Non-oblong composites which have only one Brazilian representation with three digits or more, they form A326387.
2) Oblong numbers that have exactly two Brazilian representations with three digits or more; these oblong integers are a subsequence of A167783 and form A326385.
3) Brazilian primes for which beta(p) = tau(p)/2 = 1, they are in A085104 \ {31, 8191}.

Examples

			One example for each type:
15 = 1111_2 = 33_4 with tau(15) = 4 and beta(15) = 2.
3906 = 62 * 63 = 111111_5 = 666_25 = (42,42)_86 = (31,31)_125 = (21,21)_185 = (18,18)_216 = (14,14)_278 = 99_433 = 77_557 = 66_650 = 33_1301 = 22_1952, so tau(3906) = 24 with beta(3906) = 12.
43 = 111_6 is Brazilian prime, so tau(43) = 2 and beta(43) = 1.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Cf. A085104 (Brazilian primes).
Subsequence of A167782.
Cf. A326378 (tau(m)/2 - 2), A326379 (tau(m)/2 - 1), A326381 (tau(m)/2 + 1), A326382 (tau(m)/2 + 2), A326383 (tau(m)/2 + 3).

Programs

  • PARI
    beta(n) = sum(i=2, n-2, #vecsort(digits(n, i), , 8)==1); \\ A220136
    isok(n) = beta(n) == numdiv(n)/2; \\ Michel Marcus, Jul 03 2019

A326378 Numbers m such that beta(m) = tau(m)/2 - 2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

6, 12, 20, 30, 56, 72, 90, 110, 132, 210, 240, 272, 306, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1482, 1560, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550, 2652, 2756, 2862, 2970, 3080, 3192, 3306, 3422, 3540, 3660, 3782
Offset: 1

Views

Author

Bernard Schott, Jul 02 2019

Keywords

Comments

As tau(m) = 2 * (2 + beta(m)), the terms of this sequence are not squares. Indeed, there exists only one family that satisfies this relation and these integers are exactly the oblong numbers that have no Brazilian representation with three digits or more.
There are no integers such as beta(m) = tau(m)/2 - q with q >= 3.

Examples

			1) tau(m) = 4 and beta(m) = 0: m = 6 which is not Brazilian.
2) tau(m) = 6 and beta(m) = 1: m = 12, 20.
   12 = 3 * 4 = 22_5, 20 = 4 * 5 = 22_9.
3) tau(m) = 8 and beta(m) = 2: m = 30, 56, 110, 506, 2162, 3422, ...
   30 = 5 * 6 = 33_9 = 22_14, 56 = 7 * 8 = 44_13 = 22_27.
4) tau(m) = 10 and beta(m) = 3: m = 272, ...
   272 = 16 * 17 = 88_32 = 44_67 = 22_135.
5) tau(m) = 12 and beta(m) = 4: m = 72, 90, 132, 306, 380, 650, 812, 992, ...
   72 = 8 * 9 = 66_11 = 44_17 = 33_23 = 22_35.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A002378 (oblong numbers).
Cf. A326379 (tau(m)/2 - 1), A326380 (tau(m)/2), A326381 (tau(m)/2 + 1), A326382 (tau(m)/2 + 2), A326383 (tau(m)/2 + 3).
Cf. A326384 (oblongs with tau(m)/2 - 1), A326385 (oblongs with tau(m)/2).

Programs

  • PARI
    beta(n) = sum(i=2, n-2, #vecsort(digits(n, i), , 8)==1); \\ A220136
    isok(n) = beta(n) == numdiv(n)/2 - 2; \\ Michel Marcus, Jul 08 2019

A326379 Numbers m such that beta(m) = tau(m)/2 - 1 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

2, 3, 5, 8, 10, 11, 14, 17, 18, 19, 22, 23, 24, 27, 28, 29, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 65, 66, 67, 68, 69, 70, 71, 74, 75, 76, 77, 78, 79, 82, 83, 84, 87, 88, 89, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 113, 115, 116
Offset: 1

Views

Author

Bernard Schott, Jul 03 2019

Keywords

Comments

As tau(m) = 2 * (1 + beta(m)), the terms of this sequence are not squares. Indeed, there are 3 subsequences which realize a partition of this sequence (see examples):
1) Non-oblong composites which have no Brazilian representation with three digits or more, they form A326386.
2) Oblong numbers that have only one Brazilian representation with three digits or more. These oblong integers are a subsequence of A167782 and form A326384.
3) Non Brazilian primes, then beta(p) = tau(p)/2 - 1 = 0.

Examples

			One example for each type:
10 = 22_4 and tau(10) = 4 with beta(10) = 1.
42 = 6 * 7 = 222_4 = 33_13 = 22_20 and tau(42) = 8 with beta(42) = 3.
17 is no Brazilian prime with tau(17) = 2 and beta(17) = 0.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Cf. A220627 (subsequence of non Brazilian primes).
Cf. A326378 (tau(m)/2 - 2), A326380 (tau(m)/2), A326381 (tau(m)/2 + 1), A326382 (tau(m)/2 + 2), A326383 (tau(m)/2 + 3).

Programs

  • PARI
    beta(n) = sum(i=2, n-2, #vecsort(digits(n, i), , 8)==1); \\ A220136
    isok(n) = beta(n) == numdiv(n)/2 - 1; \\ Michel Marcus, Jul 03 2019

A326382 Numbers m such that beta(m) = tau(m)/2 + 2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

32767, 65535, 67053, 2097151, 4381419, 7174453, 9808617, 13938267, 14348906, 19617234, 21523360, 29425851, 39234468, 43046720, 48686547, 49043085, 58851702, 61035156, 68660319, 71270178, 78468936, 88277553, 98086170, 107894787, 115174101, 117703404, 134217727, 142540356, 175965517
Offset: 1

Views

Author

Bernard Schott, Jul 08 2019

Keywords

Comments

As tau(m) = 2 * (beta(m) - 2) , the terms of this sequence are not squares.
There are 2 subsequences which realize a partition of this sequence (see array in link and examples):
1) Non-oblong composites which have exactly three Brazilian representations with three digits or more, they are in A326389.
2) Oblong numbers that have exactly four Brazilian representations with three digits or more. These integers have been found through b-file of Rémy Sigrist in A290869. These oblong integers are a subsequence of A309062.
There are no primes that satisfy this relation.

Examples

			One example for each type:
1) The divisors of 32767 are {1, 7, 31, 151, 217, 1057, 4681, 32767} and tau(32767) = 8; also, 32767 = M_15 = R(15)_2 = 77777_8 = (31,31,31)_32 = (151,151)_216 = (31,31)_1056 = 77_4680 so beta(32767) = 6 with beta'(32767) = 3 and beta"(32767)= 3. The relation is beta(32767) = tau(32767)/2 + 2 = 6.
2) 61035156 = 7812 * 7813 is oblong with tau(61035156) = 144. The four Brazilian representations with three digits or more are 61035156 = R(12)_5 = 666666_25 = (31,31,31,31)_125 = (156,156,156)_625, so beta"(61035156) = 4 and beta(61035156) = tau(61035156)/2 + 2 = 74.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A167782, A167783 and A290869.
Cf. A326378 (tau(m)/2 - 2), A326379 (tau(m)/2 - 1), A326380 (tau(m)/2), A326381 (tau(m)/2 + 1), this sequence (tau(m)/2 + 2), A326383 (tau(m)/2 + 3).

Extensions

Missing a(18) inserted by Bernard Schott, Jul 20 2019

A326383 Numbers m such that beta(m) = tau(m)/2 + 3 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

4095, 262143, 265720, 531440, 1048575, 5592405, 11184810, 122070312, 183105468, 193710244, 244140624, 268435455, 387420488
Offset: 1

Views

Author

Bernard Schott, Jul 08 2019

Keywords

Comments

As tau(m) = 2 * (beta(m) - 3), the terms of this sequence are not squares.
The current known terms are non-oblong composites that have exactly four Brazilian representations with three digits or more; but, maybe, there exist oblong integers that have exactly five Brazilian representations with three digits or more.

Examples

			The 24 divisors of 4095 = M_12 are {1, 3, 5, 7, 9, 13, 15, 21, 35, 39, 45, 63, 65, 91, 105, 117, 195, 273, 315, 455, 585, 819, 1365, 4095} and tau(4095) = 24; also, 4095 = R(12)_2 = 333333_4 = 7777_8 = (15,15,15)_16, so, beta(4095) = 15 with beta'(4095)= 11 and beta''(4095) = 4. The relation is beta(4095) = tau(4095)/2 + 3 = 15 and 4095 is a term.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A167782, A167783 and A290869.
Cf. A326378 (tau(m)/2 - 2), A326379 (tau(m)/2 - 1), A326380 (tau(m)/2), A326381 (tau(m)/2 + 1), A326382 (tau(m)/2 + 2).

A326388 Non-oblong composites m such that beta(m) = tau(m)/2 + 1 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

63, 255, 273, 364, 511, 546, 728, 777, 931, 1023, 1365, 1464, 2730, 3280, 3549, 3783, 4557, 6560, 7566, 7812, 9114, 9331, 9841, 10507, 11349, 11718, 13671, 14043, 14763, 15132, 15624, 16383, 18291, 18662, 18915, 19608, 19682, 21845, 22351, 22698
Offset: 1

Views

Author

Bernard Schott, Jul 13 2019

Keywords

Comments

As tau(m) = 2 * (beta(m) - 1), the terms of this sequence are not squares.
The number of Brazilian representations of a non-oblong number m with repdigits of length = 2 is beta'(n) = tau(n)/2 - 1.
This sequence is the first subsequence of A326381: non-oblong composites which have exactly two Brazilian representations with three digits or more.
Some Mersenne numbers belong to this sequence: M_6, M_8, M_9, M_10, M_14, ...

Examples

			tau(m) = 4 and beta(m) = 3 for m = 511 with 511 = 111111111_2 = 777_8 = 77_72,
tau(m) = 6 and beta(m) = 4 for m = 63 with 63 = 111111_2 = 333_4 = 77_8 = 33_20,
tau(m) = 8 and beta(m) = 5 for m = 255 with 255 = 11111111_2 = 3333_4 = (15,15)_16 = 55_50 = 33_84,
tau(m) = 12 and beta(m) = 7 for m = 364 with 364 = 111111_3 = 4444_9 = (14,14)_25 = (13,13)_27 = 77_51 = 44_90 = 22_181.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A167782, A167783, A308874 and A326381.
Cf. A326386 (non-oblongs with tau(m)/2 - 1), A326387 (non-oblongs with tau(m)/2), A326389 (non-oblongs with tau(m)/2 + 2).

Programs

  • PARI
    isoblong(n) = my(m=sqrtint(n)); m*(m+1)==n; \\ A002378
    beta(n) = sum(i=2, n-2, #vecsort(digits(n, i), , 8)==1); \\ A220136
    isok(m) = !isprime(m) && !isoblong(m) && (beta(m) == numdiv(m)/2 + 1); \\ Michel Marcus, Jul 15 2019

A326706 Numbers m such that beta(m) = tau(m)/2 + k for some k >= 4, where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

16777215, 435356467, 1073741823, 68719476735, 1099511627775, 4398046511103, 35184372088831, 281474976710655, 14901161193847656, 18014398509481983
Offset: 1

Views

Author

Bernard Schott, Aug 09 2019

Keywords

Comments

As tau(m) = 2 * (beta(m) - k) is even, the terms of this sequence are not squares.
There are two classes of terms (see array in link and examples):
1) Non-oblong composites which have five or more Brazilian representations with three digits or more, they form a subsequence of A326705. The smallest example is a(1) = 16777215 = M_24.
2) Oblong numbers that have six or more Brazilian representations with three digits or more, they form a subsequence of A309062. The smallest example is a(9) (see 2nd example).
For a(1) to a(10), the numbers k are respectively 5, 4, 5, 6, 5, 5, 4, 7, 4 and 5.
Some Mersenne numbers are terms: M_24 = a(1), M_30 = a(3), M_36 = a(4), M_40 = a(5), M_42 = a(6), M_45 = a(7), M_48 = a(8), M_54 = a(10).

Examples

			One example of each type:
1) Non-oblong with beta"(m) = 5; tau(435356467) = 64 and 435356467 = (6^12 - 1)/5 has exactly five Brazilian representations with three digits or more: R(12)_6 = 777777_36 = (43,43,43)_216 = (259,259,259)_1296 = (31,31,31)_3747 and has 31 representations with 2 digits, so beta(435356467) = 36 and k = 4.
2) Oblong with beta"(m) = 6; tau(14901161193847656) = 768 and 14901161193847656 = (5^24 - 1)/4 = 122070312*122070313 is oblong. The six Brazilian representations with three digits or more of this term are R(24)_5 = 666666666666_25 = (31,31,31,31,31,31,31,31)_125 = (156,156,156,156,156)_625, =(3906,3906,3906,3906)_15625 = (97656,97656,97656)_390625 so beta"(14901161193847656) = 6 and beta(61035156) = (tau(61035156)/2 - 2) + 6 = 388 and k = 4.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A167782, A167783 and A290869.
Cf. A326378 (tau(m)/2 - 2), A326379 (tau(m)/2 - 1), A326380 (tau(m)/2), A326381 (tau(m)/2 + 1), A326382 (tau(m)/2 + 2), A326383 (tau(m)/2 + 3), this sequence (tau(m)/2 + k, k >= 4).
Cf. A291592 (Mersenne numbers).

Programs

  • PARI
    okrepu3(b, target, lim) = {my(k = 3, nb = 0, x); while ((x=(b^k-1)/(b-1)) <= target, if (x==target, nb++); k++); nb; }
    dge3(n, d) = {my(nb=0, ndi, limi); for (i=1, #d, ndi = n/d[i]; limi = sqrtint(ndi); for (k=d[i]+1, limi, nb += okrepu3(k, ndi, limi); ); ); nb; }
    deq2(n, d) = {my(nb=0, nk); for (k=1, #d\2, nk = (n - d[k])/d[k]; if (nk > d[k], nb++); ); nb; }
    beta(n) = {if (n<3, return (0)); my(d=divisors(n)); deq2(n, d) + dge3(n, d) - 1; }
    isok(n) = beta(n) - numdiv(n)/2 > = 4; \\ Michel Marcus, Aug 10 2019
Showing 1-7 of 7 results.