A326378 Numbers m such that beta(m) = tau(m)/2 - 2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.
6, 12, 20, 30, 56, 72, 90, 110, 132, 210, 240, 272, 306, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1482, 1560, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550, 2652, 2756, 2862, 2970, 3080, 3192, 3306, 3422, 3540, 3660, 3782
Offset: 1
Examples
1) tau(m) = 4 and beta(m) = 0: m = 6 which is not Brazilian. 2) tau(m) = 6 and beta(m) = 1: m = 12, 20. 12 = 3 * 4 = 22_5, 20 = 4 * 5 = 22_9. 3) tau(m) = 8 and beta(m) = 2: m = 30, 56, 110, 506, 2162, 3422, ... 30 = 5 * 6 = 33_9 = 22_14, 56 = 7 * 8 = 44_13 = 22_27. 4) tau(m) = 10 and beta(m) = 3: m = 272, ... 272 = 16 * 17 = 88_32 = 44_67 = 22_135. 5) tau(m) = 12 and beta(m) = 4: m = 72, 90, 132, 306, 380, 650, 812, 992, ... 72 = 8 * 9 = 66_11 = 44_17 = 33_23 = 22_35.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..800
- Bernard Schott, Relation beta = f(tau).
- Index entries for sequences related to Brazilian numbers.
Crossrefs
Programs
-
PARI
beta(n) = sum(i=2, n-2, #vecsort(digits(n, i), , 8)==1); \\ A220136 isok(n) = beta(n) == numdiv(n)/2 - 2; \\ Michel Marcus, Jul 08 2019
Comments