cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309081 a(n) = n - floor(n/2^2) + floor(n/3^2) - floor(n/4^2) + ...

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 6, 6, 8, 9, 10, 10, 11, 12, 13, 12, 13, 15, 16, 16, 17, 18, 19, 19, 21, 22, 24, 24, 25, 26, 27, 26, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 37, 38, 39, 38, 40, 42, 43, 43, 44, 46, 47, 47, 48, 49, 50, 50, 51, 52, 54, 52, 53, 54, 55, 55, 56, 57, 58, 58, 59, 60, 62
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 11 2019

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [m-&+[(-1)^(k)*Floor(m/k^2):k in [2..m] ]:m in [2..75]]; // Marius A. Burtea, Jul 12 2019
    
  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector([$1..N]):
    for k from 2 to floor(sqrt(N)) do
      for j from 1 to N/k^2 do
        t:=min((j+1)*k^2-1,N);
        V[j*k^2..t]:= V[j*k^2..t] +~ (-1)^(k+1)*j
    od od:
    convert(V,list); # Robert Israel, Jul 12 2019
  • Mathematica
    Table[Sum[(-1)^(k + 1) Floor[n/k^2], {k, 1, n}], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[1/(1 - x) Sum[(-1)^(k + 1) x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[nmax^(1/2)] + 1}], {x, 0, nmax}], x] // Rest
    Table[Sum[Boole[IntegerQ[d^(1/2)] && OddQ[d]], {d, Divisors[n]}] - Sum[Boole[IntegerQ[d^(1/2)] && EvenQ[d]], {d, Divisors[n]}], {n, 1, 75}] // Accumulate
  • Python
    from math import isqrt
    def A309081(n): return n+sum((1 if k%2 else -1)*(n//k**2) for k in range(2,isqrt(n)+1)) # Chai Wah Wu, Dec 20 2021

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} (-1)^(k+1) * x^(k^2)/(1 - x^(k^2)).
a(n) ~ Pi^2*n/12. - Vaclav Kotesovec, Oct 12 2019