A309098 Number of partitions of n avoiding the partition (4,3).
1, 1, 2, 3, 5, 7, 11, 14, 20, 25, 33, 39, 51, 58, 72, 82, 99, 110, 131, 143, 168, 183, 210, 226, 259, 277, 312, 333, 372, 394, 439, 462, 511, 537, 588, 617, 675, 705, 765, 798, 864, 898, 970, 1005, 1081, 1121, 1199, 1240, 1326, 1369, 1459, 1505, 1599, 1646
Offset: 0
Links
- Jonathan Bloom and Nathan McNew, Counting pattern-avoiding integer partitions, arXiv:1908.03953 [math.CO], 2019.
- J. Bloom and D. Saracino, On Criteria for rook equivalence of Ferrers boards, arXiv:1808.04221 [math.CO], 2018.
- J. Bloom and D. Saracino, Rook and Wilf equivalence of integer partitions, arXiv:1808.04238 [math.CO], 2018.
- J. Bloom and D. Saracino, Rook and Wilf equivalence of integer partitions, European J. Combin., 71 (2018), 246-267.
- J. Bloom and D. Saracino, On Criteria for rook equivalence of Ferrers boards, European J. Combin., 76 (2018), 199-207.
Programs
-
PARI
lista(n)=Vec((1+sum(i=3,n,x^i/(1-x^i)+O(x*x^n)))/(1-x-x^2+x^3)) \\ Christian Sievers, Sep 01 2025
Formula
G.f.: (1 + Sum_{i>=3} x^i/(1-x^i)) / (1-x-x^2+x^3). - Christian Sievers, Sep 01 2025
Extensions
More terms from Alois P. Heinz, Jul 12 2019
Comments