cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309101 Primes whose decimal representation can be written as a sequence of primes separated by single zeros.

Original entry on oeis.org

307, 503, 1103, 1303, 1307, 1907, 2011, 2017, 2029, 2053, 2083, 2089, 2903, 3011, 3019, 3023, 3037, 3041, 3061, 3067, 3079, 3083, 3089, 4703, 5011, 5023, 5059, 5303, 5903, 6703, 7013, 7019, 7043, 7079, 7103, 7307, 7907, 10103, 10303, 10903, 11047, 11059, 11071, 11083
Offset: 1

Views

Author

Bernard Schott, Jul 12 2019

Keywords

Comments

In the Honaker-Caldwell link there is the example
2030507011013017019023029031037041043047053059061067071073079083089097
with 70 digits. It consists of the sequence of primes less than 100 separated by zeros.

Examples

			10103 is a term because 101 and 3 are primes separated by a single zero.
		

Crossrefs

Cf. A000040.

Programs

  • Mathematica
    Take[Select[FromDigits[Flatten[IntegerDigits/@#]]&/@(Riffle[#,0]&/@Tuples[Prime[ Range[ 30]],2]),PrimeQ]//Sort,50] (* Harvey P. Dale, Jul 05 2022 *)
  • PARI
    cut(d, b) = {my(nb = hammingweight(b), vs = vector(nb+1, k, ""), iz = 0, ind = 1); for (i=1, #d, if (d[i] == 0, iz ++; if (b[iz], ind++, vs[ind] = concat(vs[ind], d[i])), vs[ind] = concat(vs[ind], d[i]););); apply(x->eval(x), vs);}
    isok(n) = {if (isprime(n), my(d = digits(n), dz = select(x->(x==0), d, 1), nbz = #dz); if (! nbz, return (0)); if (nbz > 1, for (k=2, #dz, if (dz[k] == dz[k-1] + 1, return (0)););); for (i=1, 2^nbz-1, my(b = binary(i)); while (#b < nbz, b = concat(0, b)); my(vstr = cut(d, b)); if (#select(x->isprime(x), vstr) == #vstr, return (1));););} \\ Michel Marcus, Aug 07 2019

Extensions

Missing term 10903 and more terms from Michel Marcus, Aug 07 2019