A309101 Primes whose decimal representation can be written as a sequence of primes separated by single zeros.
307, 503, 1103, 1303, 1307, 1907, 2011, 2017, 2029, 2053, 2083, 2089, 2903, 3011, 3019, 3023, 3037, 3041, 3061, 3067, 3079, 3083, 3089, 4703, 5011, 5023, 5059, 5303, 5903, 6703, 7013, 7019, 7043, 7079, 7103, 7307, 7907, 10103, 10303, 10903, 11047, 11059, 11071, 11083
Offset: 1
Examples
10103 is a term because 101 and 3 are primes separated by a single zero.
Links
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios!: 20305...89097 (70-digits)
Crossrefs
Cf. A000040.
Programs
-
Mathematica
Take[Select[FromDigits[Flatten[IntegerDigits/@#]]&/@(Riffle[#,0]&/@Tuples[Prime[ Range[ 30]],2]),PrimeQ]//Sort,50] (* Harvey P. Dale, Jul 05 2022 *)
-
PARI
cut(d, b) = {my(nb = hammingweight(b), vs = vector(nb+1, k, ""), iz = 0, ind = 1); for (i=1, #d, if (d[i] == 0, iz ++; if (b[iz], ind++, vs[ind] = concat(vs[ind], d[i])), vs[ind] = concat(vs[ind], d[i]););); apply(x->eval(x), vs);} isok(n) = {if (isprime(n), my(d = digits(n), dz = select(x->(x==0), d, 1), nbz = #dz); if (! nbz, return (0)); if (nbz > 1, for (k=2, #dz, if (dz[k] == dz[k-1] + 1, return (0)););); for (i=1, 2^nbz-1, my(b = binary(i)); while (#b < nbz, b = concat(0, b)); my(vstr = cut(d, b)); if (#select(x->isprime(x), vstr) == #vstr, return (1));););} \\ Michel Marcus, Aug 07 2019
Extensions
Missing term 10903 and more terms from Michel Marcus, Aug 07 2019
Comments