A309118 Number of tiles added at iteration n when successively, layer by layer, building a symmetric patch of a rhombille tiling around a central star of six rhombs.
6, 6, 12, 18, 24, 24, 36, 30, 48, 36, 60, 42, 72, 48, 84, 54, 96, 60, 108, 66, 120, 72, 132, 78, 144, 84, 156, 90, 168, 96, 180, 102, 192, 108, 204, 114, 216, 120, 228, 126, 240, 132, 252, 138, 264, 144, 276, 150, 288, 156, 300, 162, 312, 168, 324, 174, 336
Offset: 1
Examples
See illustration in Fröhlich, 2019.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Felix Fröhlich, Layers in the rhombille tiling, 2019.
- Wikipedia, Rhombille tiling
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Programs
-
Magma
I:=[6,6,12,18,24,24]; [n le 6 select I[n] else 2*Self(n-2)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, Jul 16 2019
-
Mathematica
Join[{6, 6}, LinearRecurrence[{0, 2, 0, -1}, {12, 18, 24, 24}, 60]] (* Vincenzo Librandi, Jul 16 2019 *)
-
PARI
a(n) = if(n<3, 6, if(n%2==0, 6*((n+2)/2), 12*((n-1)/2)))
-
PARI
Vec(6*x*(1 + x + x^3 + x^4 - x^5) / ((1 - x)^2*(1 + x)^2) + O(x^40)) \\ Colin Barker, Jul 13 2019
Formula
a(2*n+1) = A008594(n).
a(2*n) = A008588(n+1) for n > 1.
From Colin Barker, Jul 13 2019: (Start)
G.f.: 6*x*(1 + x + x^3 + x^4 - x^5) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>6.
(End)