A309120 a(n) is the least k > 1 such that n*k is adjacent to a prime.
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 6, 3, 6, 5, 2, 2, 2, 2, 4, 2, 2, 2, 4, 5, 4, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 6, 2, 2, 3, 2, 2, 2, 3, 4, 3
Offset: 1
Keywords
Examples
a(13)=4 because 4*13+1=53 is prime but none of 2*13-1,2*13+1,3*13-1,3*13+1 are primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(m) local k; for k from 2 by 1+(m mod 2) do if isprime(k*m-1) or isprime(k*m+1) then return k fi od end proc: map(f, [$1..100]);
-
Mathematica
a[n_]:=Module[{k=2},While[Not[PrimeQ[k*n-1]||PrimeQ[k*n+1]],k++];k]; a/@Range[94] (* Ivan N. Ianakiev, Jul 18 2019 *)
-
PARI
a(n) = my(k=2); while (!isprime(n*k+1) && !isprime(n*k-1), k++); k; \\ Michel Marcus, Jul 19 2019
Comments