A309122 Sum of the sizes of all subsets of [n] whose sum is divisible by n.
1, 1, 6, 6, 20, 34, 70, 124, 270, 516, 1034, 2060, 4108, 8198, 16440, 32760, 65552, 131142, 262162, 524312, 1048740, 2097162, 4194326, 8388856, 16777300, 33554444, 67109418, 134217764, 268435484, 536872072, 1073741854, 2147483632, 4294969404, 8589934608
Offset: 1
Keywords
Examples
a(5) = 20 = 0 + 1 + 2 + 2 + 3 + 3 + 4 + 5 = |{}| + |{5}| + |{1,4}| + |{2,3}| + |{1,4,5}| + |{2,3,5}| + |{1,2,3,4}| + |{1,2,3,4,5}|.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, m, s) option remember; `if`(n=0, [`if`(s=0, 1, 0), 0], b(n-1, m, s) +(g-> g+[0, g[1]])(b(n-1, m, irem(s+n, m)))) end: a:= proc(n) option remember; forget(b); b(n$2, 0)[2] end: seq(a(n), n=1..40);
-
Mathematica
b[n_, m_, s_] := b[n, m, s] = If[n == 0, {If[s == 0, 1, 0], 0}, b[n-1, m, s] + Function[g, g + {0, g[[1]]}][b[n-1, m, Mod[s+n, m]]]]; a[n_] := b[n, n, 0][[2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=1..n} k * A267632(n,k).
From Petros Hadjicostas, Jul 13 2019: (Start)
G.f.: Sum_{s >= 1} phi(s) * (-x)^(s-1)/(1 - x^s + (-x)^s) = -Sum_{m >= 1} phi(2*m) * x^(2*m-1) + Sum_{m >= 0} phi(2*m+1) * x^(2*m)/(1 - 2*x^(2*m+1)).
a(2*m + 1) = A053636(2*m + 1)/2 = (1/2) * Sum_{d|2*m+1} phi(d) * 2^((2*m+1)/d) for m >= 0.
a(2*m) = -phi(2*m) + A053636(2*m)/2 for m >= 1.
(End)
Comments