cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309125 a(n) = n + 2^2 * floor(n/2^2) + 3^2 * floor(n/3^2) + 4^2 * floor(n/4^2) + ...

Original entry on oeis.org

1, 2, 3, 8, 9, 10, 11, 16, 26, 27, 28, 33, 34, 35, 36, 57, 58, 68, 69, 74, 75, 76, 77, 82, 108, 109, 119, 124, 125, 126, 127, 148, 149, 150, 151, 201, 202, 203, 204, 209, 210, 211, 212, 217, 227, 228, 229, 250, 300, 326, 327, 332, 333, 343, 344, 349, 350, 351, 352, 357, 358, 359, 369, 454, 455, 456
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 13 2019

Keywords

Comments

Partial sums of A035316.

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^2 Floor[n/k^2], {k, 1, n}], {n, 1, 66}]
    nmax = 66; CoefficientList[Series[1/(1 - x) Sum[k^2 x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[nmax^(1/2)] + 1}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=1, n, k^2*(n\k^2)); \\ Seiichi Manyama, Aug 30 2021

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} k^2 * x^(k^2)/(1 - x^(k^2)).
a(n) ~ zeta(3/2)*n^(3/2)/3 - n/2. - Vaclav Kotesovec, Aug 30 2021