cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309128 (1/n) times the sum of the elements of all subsets of [n] whose sum is divisible by n.

Original entry on oeis.org

1, 1, 4, 4, 12, 20, 40, 70, 150, 284, 564, 1116, 2212, 4392, 8768, 17404, 34704, 69214, 137980, 275264, 549340, 1096244, 2188344, 4369196, 8724196, 17422500, 34797476, 69505628, 138845940, 277383904, 554189344, 1107296248, 2212559996, 4421289872, 8835361488
Offset: 1

Views

Author

Alois P. Heinz, Jul 13 2019

Keywords

Examples

			The subsets of [5] whose sum is divisible by 5 are: {}, {5}, {1,4}, {2,3}, {1,4,5}, {2,3,5}, {1,2,3,4}, {1,2,3,4,5}.  The sum of their elements is 0 + 5 + 5 + 5 + 10 + 10 + 10 + 15 = 60.  So a(5) = 60/5 = 12.
		

Crossrefs

Cf. A000010, A001792 (the same for all subsets), A053636, A063776, A309122, A309280.

Programs

  • Maple
    b:= proc(n, m, s) option remember; `if`(n=0, [`if`(s=0, 1, 0), 0],
          b(n-1, m, s) +(g-> g+[0, g[1]*n])(b(n-1, m, irem(s+n, m))))
        end:
    a:= proc(n) option remember; forget(b); b(n$2, 0)[2]/n end:
    seq(a(n), n=1..40);
  • Mathematica
    b[n_, m_, s_] := b[n, m, s] = If[n == 0, {If[s == 0, 1, 0], 0},
         b[n-1, m, s] + Function[g, g+{0, g[[1]] n}][b[n-1, m, Mod[s+n, m]]]];
    a[n_] := b[n, n, 0][[2]]/n;
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)

Formula

Conjecture: a(n) = (n + 1) * A063776(n)/4 - (phi(n)/2) * (1 + (-1)^n)/2 = ((n + 1)/(4*n)) * A053636(n) - (phi(n)/2) * (1 + (-1)^n)/2. - Petros Hadjicostas, Jul 20 2019
a(n) = A309280(n,n). - Alois P. Heinz, Jul 21 2019