A309160 Number of nonempty subsets of [n] whose elements have a prime average.
0, 1, 4, 6, 11, 15, 22, 40, 72, 118, 199, 355, 604, 920, 1306, 1906, 3281, 6985, 16446, 38034, 82490, 168076, 325935, 604213, 1068941, 1815745, 3038319, 5246725, 9796132, 19966752, 42918987, 92984247, 197027405, 402932711, 792381923, 1499918753, 2746078246
Offset: 1
Keywords
Examples
a(3) = 4 because 4 of the subsets of [3], namely {2}, {3}, {1,3}, {1,2,3}, have prime averages.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..200
Programs
-
Maple
b:= proc(n, s, c) option remember; `if`(n=0, `if`(c>0 and denom(s)=1 and isprime(s), 1, 0), b(n-1, s, c)+b(n-1, (s*c+n)/(c+1), c+1)) end: a:= n-> b(n, 0$2): seq(a(n), n=1..40); # Alois P. Heinz, Jul 15 2019
-
Mathematica
a[n_]:=Length[Select[Subsets[Range[n]],PrimeQ[Mean[#]]&]]; a/@Range[25]
-
Python
from sympy import isprime from functools import lru_cache def cond(s, c): q, r = divmod(s, c); return r == 0 and isprime(q) @lru_cache(maxsize=None) def b(n, s, c): if n == 0: return int (c > 0 and cond(s, c)) return b(n-1, s, c) + b(n-1, s+n, c+1) a = lambda n: b(n, 0, 0) print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Sep 25 2022
Formula
a(n) < A051293(n).
Extensions
a(26)-a(37) from Alois P. Heinz, Jul 15 2019