cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309160 Number of nonempty subsets of [n] whose elements have a prime average.

Original entry on oeis.org

0, 1, 4, 6, 11, 15, 22, 40, 72, 118, 199, 355, 604, 920, 1306, 1906, 3281, 6985, 16446, 38034, 82490, 168076, 325935, 604213, 1068941, 1815745, 3038319, 5246725, 9796132, 19966752, 42918987, 92984247, 197027405, 402932711, 792381923, 1499918753, 2746078246
Offset: 1

Views

Author

Ivan N. Ianakiev, Jul 15 2019

Keywords

Examples

			a(3) = 4 because 4 of the subsets of [3], namely {2}, {3}, {1,3}, {1,2,3}, have prime averages.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, s, c) option remember; `if`(n=0,
          `if`(c>0 and denom(s)=1 and isprime(s), 1, 0),
           b(n-1, s, c)+b(n-1, (s*c+n)/(c+1), c+1))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 15 2019
  • Mathematica
    a[n_]:=Length[Select[Subsets[Range[n]],PrimeQ[Mean[#]]&]]; a/@Range[25]
  • Python
    from sympy import isprime
    from functools import lru_cache
    def cond(s, c): q, r = divmod(s, c); return r == 0 and isprime(q)
    @lru_cache(maxsize=None)
    def b(n, s, c):
        if n == 0: return int (c > 0 and cond(s, c))
        return b(n-1, s, c) + b(n-1, s+n, c+1)
    a = lambda n: b(n, 0, 0)
    print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Sep 25 2022

Formula

a(n) < A051293(n).

Extensions

a(26)-a(37) from Alois P. Heinz, Jul 15 2019