cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A329970 a(n) = (-1)^(n + 1) * n * ceiling(n/2) + Sum_{k=1..n} (-1)^k * k^2 * floor(n/k).

Original entry on oeis.org

0, 0, -2, 3, 0, -3, -7, 16, 2, -15, -21, 31, 24, -15, -57, 34, 25, -17, -27, 77, 8, -99, -111, 155, 117, -36, -140, 40, 25, -80, -96, 259, 112, -157, -249, 202, 183, -156, -354, 224, 203, -40, -62, 342, -21, -524, -548, 562, 488, -34, -358, 194, 167, -262
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(-1)^(n + 1) n Ceiling[n/2] + Sum[(-1)^k k^2 Floor[n/k], {k, 1, n}], {n, 1, 54}]
    nmax = 54; CoefficientList[Series[x (1 - x + 2 x^2)/((1 - x)^2 (1 + x)^3) + 1/(1 - x) Sum[(-1)^k k^2 x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[(-1)^(k + 1) Mod[n, k] k, {k, 1, n}], {n, 1, 54}]
  • PARI
    a(n) = (-1)^(n + 1)*n*ceil(n/2) + sum(k=1, n, (-1)^k * k^2 * (n\k)); \\ Michel Marcus, Sep 20 2021

Formula

G.f.: x * (1 - x + 2*x^2) / ((1 - x)^2 * (1 + x)^3) + (1/(1 - x)) * Sum_{k>=1} (-1)^k * k^2 * x^k / (1 - x^k).
a(n) = Sum_{k=1..n} (-1)^(k + 1) * (n mod k) * k.
Showing 1-1 of 1 results.