cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A309148 A(n,k) is (1/k) times the number of n-member subsets of [k*n] whose elements sum to a multiple of n; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 4, 0, 1, 3, 10, 9, 1, 1, 4, 19, 42, 26, 0, 1, 5, 31, 115, 201, 76, 1, 1, 6, 46, 244, 776, 1028, 246, 0, 1, 7, 64, 445, 2126, 5601, 5538, 809, 1, 1, 8, 85, 734, 4751, 19780, 42288, 30666, 2704, 0, 1, 9, 109, 1127, 9276, 54086, 192130, 328755, 173593, 9226, 1
Offset: 1

Views

Author

Alois P. Heinz, Jul 14 2019

Keywords

Comments

For k > 1 also (1/(k-1)) times the number of n-member subsets of [k*n-1] whose elements sum to a multiple of n.
The sequence of row n satisfies a linear recurrence with constant coefficients of order n.

Examples

			Square array A(n,k) begins:
  1,   1,    1,     1,      1,      1,       1, ...
  0,   1,    2,     3,      4,      5,       6, ...
  1,   4,   10,    19,     31,     46,      64, ...
  0,   9,   42,   115,    244,    445,     734, ...
  1,  26,  201,   776,   2126,   4751,    9276, ...
  0,  76, 1028,  5601,  19780,  54086,  124872, ...
  1, 246, 5538, 42288, 192130, 642342, 1753074, ...
		

Crossrefs

Rows n=1-3 give: A000012, A001477(k-1), A005448.
Main diagonal gives A308667.

Programs

  • Maple
    with(numtheory):
    A:= (n, k)-> add(binomial(k*d, d)*(-1)^(n+d)*
                 phi(n/d), d in divisors(n))/(n*k):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    A[n_, k_] := 1/(n k) Sum[Binomial[k d, d] (-1)^(n+d) EulerPhi[n/d], {d, Divisors[n]}];
    Table[A[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 04 2019 *)

Formula

A(n,k) = 1/(n*k) * Sum_{d|n} binomial(k*d,d)*(-1)^(n+d)*phi(n/d).
A(n,k) = (1/k) * A304482(n,k).
Showing 1-1 of 1 results.