A145855
Number of n-element subsets of {1,2,...,2n-1} whose elements sum to a multiple of n.
Original entry on oeis.org
1, 1, 4, 9, 26, 76, 246, 809, 2704, 9226, 32066, 112716, 400024, 1432614, 5170604, 18784169, 68635478, 252085792, 930138522, 3446167834, 12815663844, 47820414962, 178987624514, 671825133644, 2528212128776, 9536894664376
Offset: 1
T. D. Noe, Oct 21 2008, Oct 22 2008, Oct 24 2008
a(3)=4 because, of the 10 3-element subsets of 1..7, only {1,2,3}, {1,3,5}, {2,3,4} and {3,4,5} have sums that are multiples of 3.
L.g.f.: L(x) = x + x^2/2 + 4*x^3/3 + 9*x^4/4 + 26*x^5/5 + 76*x^6/6 + 246*x^7/7 +...
where exponentiation yields the g.f. of A000571:
exp(L(x)) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 22*x^6 + 59*x^7 + 167*x^8 +...
- Seiichi Manyama, Table of n, a(n) for n = 1..1669 (terms 1..200 from T. D. Noe)
- Max Alekseyev, Proof of Jovovic's formula, 2008.
- Michal Bassan, Serte Donderwinkel, and Brett Kolesnik, Tournament score sequences, Erdős-Ginzburg-Ziv numbers, and the Lévy-Khintchine method, arXiv:2407.01441 [math.CO], 2024. See p. 7.
- Shane Chern, An extension of a formula of Jovovic, Integers (2019) Vol. 19, Article A47.
- Anders Claesson, Mark Dukes, Atli Fannar Franklín, and Sigurður Örn Stefánsson, Counting tournament score sequences, arXiv:2209.03925 [math.CO], 2022.
- P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10 (1961).
- Steven Rayan, Aspects of the topology and combinatorics of Higgs bundle moduli spaces, arXiv:1809.05732 [math.AG], 2018.
- Mithat Ünsal, Graded Hilbert spaces, quantum distillation and connecting SQCD to QCD, arXiv:2104.12352 [hep-th], 2021.
-
Table[Length[Select[Plus@@@Subsets[Range[2n-1],{n}], Mod[ #,n]==0&]], {n,10}]
Table[d=Divisors[n]; Sum[(-1)^(n+d[[i]]) EulerPhi[n/d[[i]]] Binomial[2d[[i]], d[[i]]]/2/n, {i,Length[d]}], {n,30}] (* T. D. Noe, Oct 24 2008 *)
-
{a(n)=sumdiv(n, d, (-1)^(n+d)*eulerphi(n/d)*binomial(2*d, d)/(2*n))}
-
{A227532(n, k)=local(G=1); for(i=1, n, G=1+x*subst(G, x, q*x)*G +x*O(x^n)); n*polcoeff(polcoeff(log(G), n, x), k, q)}
{a(n)=sum(k=0,n\2, A227532(n, n*k))} \\ Paul D. Hanna, Jul 17 2013
A308667
(1/n) times the number of n-member subsets of [n^2] whose elements sum to a multiple of n.
Original entry on oeis.org
1, 1, 10, 115, 2126, 54086, 1753074, 69159399, 3220837534, 173103073384, 10551652603526, 719578430425845, 54297978110913252, 4492502634538340722, 404469190271900056316, 39370123445405248353743, 4120204305690280446004838, 461365717080848755611811094
Offset: 1
-
with(numtheory):
a:= proc(n) option remember; add(phi(n/d)*
(-1)^(n+d)*binomial(n*d, d), d=divisors(n))/n^2
end:
seq(a(n), n=1..20);
-
a[n_] := a[n] = Sum[EulerPhi[n/d]*
(-1)^(n + d)*Binomial[n*d, d], {d, Divisors[n]}]/n^2;
Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Mar 24 2022, after Alois P. Heinz *)
A309182
(1/3) times the number of n-member subsets of [3n] whose elements sum to a multiple of n.
Original entry on oeis.org
1, 2, 10, 42, 201, 1028, 5538, 30666, 173593, 1001402, 5864750, 34769364, 208267320, 1258574116, 7663720710, 46976034378, 289628805623, 1794932294978, 11175157356522, 69864075597442, 438403736549145, 2760351027094300, 17433869214973754, 110420300879752980
Offset: 1
-
with(numtheory):
a:= n-> add(binomial(3*d, d)*(-1)^(n+d)*
phi(n/d), d in divisors(n))/(3*n):
seq(a(n), n=1..25);
A309183
(1/4) times the number of n-member subsets of [4n] whose elements sum to a multiple of n.
Original entry on oeis.org
1, 3, 19, 115, 776, 5601, 42288, 328755, 2615104, 21191128, 174303163, 1451430673, 12211799224, 103655906784, 886568153744, 7633233556275, 66105170315084, 575445689884848, 5032380942945322, 44191451788247640, 389514699013012242, 3444925385161998521
Offset: 1
-
with(numtheory):
a:= n-> add(binomial(4*d, d)*(-1)^(n+d)*
phi(n/d), d in divisors(n))/(4*n):
seq(a(n), n=1..25);
A309184
(1/5) times the number of n-member subsets of [5n] whose elements sum to a multiple of n.
Original entry on oeis.org
1, 4, 31, 244, 2126, 19780, 192130, 1922740, 19692535, 205444504, 2175519380, 23322657460, 252631900236, 2760767859784, 30400169157656, 336977765092788, 3757141504436393, 42107201575818028, 474084628585822413, 5359833704140818744, 60823006052351729266
Offset: 1
-
with(numtheory):
a:= n-> add(binomial(5*d, d)*(-1)^(n+d)*
phi(n/d), d in divisors(n))/(5*n):
seq(a(n), n=1..25);
A309185
(1/6) times the number of n-member subsets of [6n] whose elements sum to a multiple of n.
Original entry on oeis.org
1, 5, 46, 445, 4751, 54086, 642342, 7861661, 98480332, 1256564755, 16273981758, 213378975958, 2826867619109, 37782552518478, 508840821830546, 6898459216311581, 94070535317459018, 1289430373107971804, 17755914760643605782, 245518560760433579195
Offset: 1
-
with(numtheory):
a:= n-> add(binomial(6*d, d)*(-1)^(n+d)*
phi(n/d), d in divisors(n))/(6*n):
seq(a(n), n=1..25);
A309186
(1/7) times the number of n-member subsets of [7n] whose elements sum to a multiple of n.
Original entry on oeis.org
1, 6, 64, 734, 9276, 124872, 1753074, 25366334, 375677659, 5667202856, 86775157140, 1345153548200, 21069043965984, 332927798516620, 5301031234085664, 84967018635587774, 1369846562874360887, 22199151535757780226, 361411377745122110422, 5908312923795257322184
Offset: 1
-
with(numtheory):
a:= n-> add(binomial(7*d, d)*(-1)^(n+d)*
phi(n/d), d in divisors(n))/(7*n):
seq(a(n), n=1..25);
-
a(n) = 1/(7*n) * sumdiv(n, d, binomial(7*d,d)*(-1)^(n+d)*eulerphi(n/d)); \\ Michel Marcus, Jul 18 2019
A309187
(1/8) times the number of n-member subsets of [8n] whose elements sum to a multiple of n.
Original entry on oeis.org
1, 7, 85, 1127, 16451, 255619, 4141383, 69159399, 1182125128, 20581143157, 363704640476, 6506965279907, 117626432708864, 2145180354493281, 39421026305282660, 729242353169440743, 13568988503585900648, 253785064585174334488, 4768543107831461199897
Offset: 1
-
with(numtheory):
a:= n-> add(binomial(8*d, d)*(-1)^(n+d)*
phi(n/d), d in divisors(n))/(8*n):
seq(a(n), n=1..25);
-
a(n) = 1/(8*n) * sumdiv(n, d, binomial(8*d,d)*(-1)^(n+d)*eulerphi(n/d)); \\ Michel Marcus, Jul 18 2019
A309188
(1/9) times the number of n-member subsets of [9n] whose elements sum to a multiple of n.
Original entry on oeis.org
1, 8, 109, 1640, 27151, 478232, 8782075, 166237160, 3220837534, 63562714008, 1273237637706, 25820645555000, 529080420540114, 10937268134114568, 227824992158991334, 4777204094770874856, 100757627271124231383, 2136117417345649876112, 45496022230420668679932
Offset: 1
-
with(numtheory):
a:= n-> add(binomial(9*d, d)*(-1)^(n+d)*
phi(n/d), d in divisors(n))/(9*n):
seq(a(n), n=1..25);
-
a(n) = 1/(9*n) * sumdiv(n, d, binomial(9*d, d)*(-1)^(n+d)*eulerphi(n/d)); \\ Michel Marcus, Jul 19 2019
A309189
(1/10) times the number of n-member subsets of [10n] whose elements sum to a multiple of n.
Original entry on oeis.org
1, 9, 136, 2289, 42376, 834336, 17125354, 362345361, 7847250409, 173103073384, 3875837737520, 87857163416064, 2012268157890524, 46497242493163450, 1082614775186919136, 25374686712458407441, 598217593341171422090, 14176230568946364963825
Offset: 1
-
with(numtheory):
a:= n-> add(binomial(10*d, d)*(-1)^(n+d)*
phi(n/d), d in divisors(n))/(10*n):
seq(a(n), n=1..25);
-
a(n) = 1/(10*n) * sumdiv(n, d, binomial(10*d, d)*(-1)^(n+d)*eulerphi(n/d)); \\ Michel Marcus, Jul 20 2019
Showing 1-10 of 10 results.
Comments