cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A309206 a(n) = (2*n)!/A309205(n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 1, 1, 13, 19, 5, 1, 221, 1, 1, 1, 1, 1, 13, 17, 5, 1, 47, 4913, 29, 7, 11, 53, 1, 47, 325, 13, 1147, 41, 1, 1, 41, 1081, 11, 1, 5, 1, 1, 83, 1, 1, 133, 1, 2491, 97, 5, 103, 61, 1, 1, 19, 226493, 1, 1, 1, 5, 31, 1, 1, 1, 1271, 289
Offset: 0

Views

Author

N. J. A. Sloane, Jul 28 2019, following a suggestion from Bill Gosper

Keywords

Comments

Bill Gosper points out that this is a better fingerprint for the series than A309205.

Crossrefs

Programs

  • Mathematica
    F[n_] := Module[{p}, p = 1 + O[x]; For[k=2, k <= n, k++, p = Cos[x p]]; p];
    seq[n_] := Module[{v}, v = CoefficientList[F[n], x]; Table[(2(k - 1))!/ Denominator[v[[2k - 1]]], {k, 1, n}]];
    seq[71] (* Jean-François Alcover, Aug 27 2019, from PARI *)
  • PARI
    \\ here F(n) gives n terms of power series.
    F(n)={my(p=1+O(x)); for(k=2, n, p=cos(x*p)); p}
    seq(n)={my(v=Vec(F(n))); vector(n, k, (2*(k-1))!/denominator(v[2*k-1]))} \\ Andrew Howroyd, Aug 17 2019

Extensions

Terms a(31) and beyond from Andrew Howroyd, Aug 17 2019

A309204 Numerators of coefficients of odd powers of x in expansion of f(x) = x cos (x cos (x cos( ... .

Original entry on oeis.org

1, -1, 13, -541, 9509, -7231801, 1695106117, -567547087381, 36760132319047, -151856004814953841, 113144789723082206461, -103890621918675777804301, 8866964955352146292017421, -8002609021370033485261033939, 47038068678960604511245887564401, -421635069078222570953208470234640901
Offset: 1

Views

Author

N. J. A. Sloane, Jul 28 2019

Keywords

Comments

f(x) satisfies f(x) = x * cos(f(x)), and the coefficients can be determined from this.

Examples

			f(x) = x - (1/2)*x^3 + (13/24)*x^5 - (541/720)*x^7 + (9509/8064)*x^9 - (7231801/3628800)*x^11 + (1695106117/479001600)*x^13 - (567547087381/87178291200)*x^15 + ...
Coefficients are: 1, -1/2, 13/24, -541/720, 9509/8064, -7231801/3628800, 1695106117/479001600, -567547087381/87178291200, 36760132319047/2988969984000, -151856004814953841/ 6402373705728000, 113144789723082206461/2432902008176640000, ...
		

Crossrefs

Cf. A309205.

Programs

  • Maple
    M := 20;
    f := add(c[i]*z^(2*i+1),i=0..M);
    f := series(f,z,2*M+3);
    f2 := series(z*cos(f)-f,z,2*M+3);
    for i from 0 to M do e[i]:=coeff(f2,z,2*i+1); od:
    elis:=[seq(e[i],i=0..M)]; clis:=[seq(c[i],i=0..M)];
    t1 := solve(elis,clis); t2 := op(t1);
    t3 := subs(t2,clis);
    map(numer, t3);
  • Mathematica
    seq[n_] := Module[{p, k}, p = 1 + O[x]; For[k = 2, k <= n, k++, p = Cos[x*p]]; p] // CoefficientList[#, x^2] & // Numerator;
    seq[16] (* Jean-François Alcover, Sep 07 2019, from PARI *)
    Table[1/(2*n + 1)* SeriesCoefficient[Cos[t]^(2*n + 1), {t, 0, 2*n}], {n, 0, 15}] // Numerator; (* Christophe Vignat, Jan 06 2020 *)
    Table[1/(2*n + 1)*Residue[(Cos[z]/z)^(2*n + 1), {z, 0}], {n, 0, 15}] // Numerator; (* Christophe Vignat, Jan 06 2020 *)
  • PARI
    \\ here F(n) gives n terms of power series.
    F(n)={my(p=1+O(x));for(k=2, n, p=cos(x*p)); p}
    seq(n)={my(v=Vec(F(n))); vector(n, k, numerator(v[2*k-1]))} \\ Andrew Howroyd, Aug 17 2019

Formula

From Christophe Vignat, Jan 06 2020: (Start)
Numerator of (-1)^n/(2^(2*n+1)*(2*n+1)!)*Sum_{k=0..2*n+1} binomial(2*n+1,k)*(2*k-2*n-1)^(2*n).
Numerator of 1/(2*n+1)*(coefficient of t^(2*n) in cos(t)^(2*n+1)).
Numerator of 1/(2*n+1)*(residue of (cos(t)/t)^(2*n+1) at t=0). (End)
Showing 1-2 of 2 results.