cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A143601 Number of labeled odd-degree trees with 2n+1 nodes.

Original entry on oeis.org

1, 1, 13, 541, 47545, 7231801, 1695106117, 567547087381, 257320926233329, 151856004814953841, 113144789723082206461, 103890621918675777804301, 115270544419577901796226473, 152049571406030636219959644841
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2008, May 27 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x^2/2! + 13*x^4/4! + 541*x^6/6! + 47545*x^8/8! + ...
The e.g.f. of A007106 (a bisection of A058014) is given by:
sqrt(A(x)^2 - 1) = x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + 686080*x^9/9! + ...
The e.g.f. of A058014 is given by:
F(x) = 1 + x + x^2/2! + 4*x^3/3! + 13*x^4/4! + 96*x^5/5! + 541*x^6/6! + ...
where A(x) = [F(x) + F(-x)]/2 and exp(x*A(x)) = F(x).
The e.g.f. of A143600 is given by:
G(x) = 1 + x + 5*x^2/2! + 25*x^3/3! + 249*x^4/4! + 2561*x^5/5! + ...
where A(2x) = [G(x)/G(-x) + G(-x)/G(x)]/2.
		

Crossrefs

Programs

  • Mathematica
    Table[(2*n)!*CoefficientList[1/x*InverseSeries[Series[x/Cosh[x],{x,0,41}],x],x][[2*n+1]],{n,0,20}] (* Vaclav Kotesovec, Jan 10 2014 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=cosh(x*A));n!*polcoeff(A,n)}
    
  • PARI
    {a(n)=(2*n)!*polcoeff(cosh(x+x*O(x^(2*n)))^(2*n+1)/(2*n+1),2*n)} \\ Paul D. Hanna, Aug 29 2008
    
  • PARI
    {a(n) = sum(k=0,n, binomial(2*n+1,k) * (2*n+1-2*k)^(2*n) / ((2*n+1) * 2^(2*n)) )}
    for(n=0,30, print1(a(n),", ")) \\ Paul D. Hanna, Feb 19 2024

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! satisfies the following formulas.
(1) A(x) = cosh(x*A(x)).
(2) A(x) = (1/x)*Series_Reversion( x/cosh(x) ).
(3) sqrt(A(x)^2 - 1) = e.g.f. of A007106.
(4) exp(x*A(x)) = A(x) + sqrt(A(x)^2-1) = e.g.f. of A058014.
(5) A(x) = [F(x) + F(-x)]/2 where F(x) = exp(x*[F(x) + 1/F(x)]/2) = e.g.f. of A058014.
(6) A(2*x) = [G(x)/G(-x) + G(-x)/G(x)]/2 where G(x) = exp(x*G(x)/G(-x)) = e.g.f. of A143600.
From Paul D. Hanna, Aug 29 2008: (Start)
(7) A(x/cosh(x)) = cosh(x).
(8) a(n) = (2n)!*[x^(2n)] cosh(x)^(2n+1)/(2n+1). (End)
(9) a(n) = Sum_{k=0..n} binomial(2*n+1,k) * (2*n+1 - 2*k)^(2*n) / ((2*n+1) * 2^(2*n)). [See formula by Christophe Vignat in A309204.] - Paul D. Hanna, Feb 19 2024
a(n) ~ 2^(2*n) * n^(2*n-1) * (s^2-1)^(n+1/2) / exp(2*n), where s = 1.810170580698977274512829... is the root of the equation sqrt(s^2-1) * log(s + sqrt(s^2-1)) = s. - Vaclav Kotesovec, Jan 10 2014
Radius of convergence r = 0.66274341934918158097474... = 1/sqrt(s^2-1) and A(r) = s (given above) satisfy r = 1/sinh(r*A(r)) and A(r) = cosh(r*A(r)). - Paul D. Hanna, Mar 04 2024

Extensions

Edited by Paul D. Hanna, May 27 2009

A265011 Decimal expansion of Integral_{x=0..1} sin(log(x))/((x+1)*log(x)) dx.

Original entry on oeis.org

5, 0, 6, 6, 7, 0, 9, 0, 3, 2, 1, 6, 6, 2, 2, 9, 8, 1, 9, 8, 5, 2, 5, 5, 8, 0, 4, 7, 8, 3, 5, 8, 1, 5, 1, 2, 4, 7, 2, 8, 4, 3, 5, 4, 7, 3, 4, 7, 0, 2, 0, 5, 8, 2, 9, 2, 0, 0, 0, 2, 4, 5, 8, 6, 5, 9, 4, 7, 0, 5, 1, 4, 5, 1, 3, 2, 2, 6, 9, 3, 1, 5, 0, 3
Offset: 0

Views

Author

John M. Campbell, Apr 06 2016

Keywords

Comments

This integral has an elegant evaluation in terms of the gamma function (see below formula). There is an interesting "symmetry" between the expressions involving the gamma function in this evaluation.

Examples

			This integral is equal to 0.50667090321662298198525580478358151247...
		

Crossrefs

Decimal expansions of definite integrals over elementary functions: A256127, A256128, A256129, A204067, A204068, A205885, A206161, A206160, A206769, A229174, A083648, A094691, A098687, A177218, A188141, A233382, A256273, A258086.
Cf. A309209 (continued fraction of the negation of this constant).

Programs

  • Mathematica
    Print[RealDigits[Re[Log[2] + Log[((Gamma[1 - I/2]^2 Gamma[1 + I])/(Gamma[1 + I/2]^2 Gamma[1 - I]))^(I/2)]], 10, 100]] ;
    NIntegrate[Sin[Log[x]]/(x + 1)/Log[x], {x, 0, 1}]
  • PARI
    intnum(x=0,1,sin(log(x))/(x+1)/log(x))

Formula

Equals log(2) + log(((Gamma(1 - i/2)^2*Gamma(1 + i))/(Gamma(1 + i/2)^2*Gamma(1 - i)))^(i/2)), where i = sqrt(-1) denotes the imaginary unit.
Equals Sum_{n >= 0} (-1)^n*arctan(1/(n+1)).

A309205 Denominators of coefficients of odd powers of x in expansion of f(x) = x cos (x cos (x cos( ... .

Original entry on oeis.org

1, 2, 24, 720, 8064, 3628800, 479001600, 87178291200, 2988969984000, 6402373705728000, 2432902008176640000, 1124000727777607680000, 47726800133326110720000, 21225866375084507136000000, 60977668922342772100300800000, 265252859812191058636308480000000
Offset: 1

Views

Author

N. J. A. Sloane, Jul 28 2019

Keywords

Comments

f(x) satisfies f(x) = x * cos(f(x)), and the coefficients can be determined from this.
Alternatively, a(n) can be written in terms of (2*n)! as a(n) = (2*n)!/A309206(n).

Examples

			f(x) = x - (1/2)*x^3 + (13/24)*x^5 - (541/720)*x^7 + (9509/8064)*x^9 - (7231801/3628800)*x^11 + (1695106117/479001600)*x^13 - (567547087381/87178291200)*x^15 + ...
Coefficients are
1, -1/2, 13/24, -541/720, 9509/8064, -7231801/3628800, 1695106117/479001600, -567547087381/87178291200, 36760132319047/2988969984000, -151856004814953841/ 6402373705728000, 113144789723082206461/2432902008176640000, ...
		

Crossrefs

Programs

  • Maple
    M := 20;
    f := add(c[i]*z^(2*i+1),i=0..M);
    f := series(f,z,2*M+3);
    f2 := series(z*cos(f)-f,z,2*M+3);
    for i from 0 to M do e[i]:=coeff(f2,z,2*i+1); od:
    elis:=[seq(e[i],i=0..M)]; clis:=[seq(c[i],i=0..M)];
    t1 := solve(elis,clis); t2 := op(t1);
    t3 := subs(t2,clis);
    map(denom, t3);
    # Alternative:
    G:= f -> f - x*cos(f):
    Newt:= unapply( f - G(f)/D(G)(f),f):
    ff:= x:
    for k from 1 to 5 do
    ff:= convert(series(Newt(ff),x,2^(k+1)),polynom)
    od:
    seq(denom(coeff(ff,x,2*i+1),i=0..31); # Robert Israel, Aug 18 2019
  • Mathematica
    seq[n_] := Module[{p, k}, p = 1+O[x]; For[k = 2, k <= n, k++, p = Cos[x*p]]; p] // CoefficientList[#, x^2]& // Denominator;
    seq[16] (* Jean-François Alcover, Sep 07 2019, from PARI *)
  • PARI
    \\ here F(n) gives n terms of power series.
    F(n)={my(p=1+O(x));for(k=2, n, p=cos(x*p)); p}
    seq(n)={my(v=Vec(F(n))); vector(n, k, denominator(v[2*k-1]))} \\ Andrew Howroyd, Aug 17 2019

A309207 Continued fraction expansion of (3 tanh (3 tanh (3 tanh (...)))).

Original entry on oeis.org

2, 1, 64, 2, 1, 1, 1, 3, 4, 1, 2, 3, 1, 272213, 1, 2, 1, 16, 110, 4, 4, 4, 1, 1, 1, 4, 1, 1, 916, 21, 11, 6, 2, 2, 2, 1, 2, 16, 3, 1, 1, 2, 2, 9, 1, 2, 8, 2, 4, 3, 2, 2, 1, 9, 6, 5, 3, 1, 4, 2, 12, 17, 1, 3, 1, 3, 1, 1, 3, 1, 7, 1, 1, 2, 8, 2, 1, 1, 5, 11, 90, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 29 2019

Keywords

Comments

This is the continued fraction expansion of the constant defined in A309211.

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[Reduce[x == 3 Tanh@x, x, Reals][[3, 2]], 33] (* Bill Gosper, Jul 30 2019 *)

Extensions

More terms from Daniel Suteu, Jul 30 2019

A309208 Decimal expansion of (3 tanh (3 tanh (3 tanh (...))))^(-2).

Original entry on oeis.org

1, 1, 2, 2, 5, 2, 8, 2, 8, 8, 7, 3, 0, 5, 8, 2, 2, 1, 9, 5, 1, 1, 2, 9, 9, 3, 1, 1, 3, 8, 8, 2, 6, 5, 4, 0, 1, 2, 0, 8, 2, 5, 4, 4, 3, 2, 3, 4, 4, 9, 7, 8, 7, 0, 1, 0, 7, 3, 5, 9, 5, 1, 4, 6, 2, 3, 4, 8, 4, 1, 0, 7, 7, 5, 3, 7, 6, 5, 2, 3, 3, 7, 9, 2, 8, 1, 3, 5, 3, 9, 7, 7, 7, 2, 6, 2, 9, 6, 5, 4, 3, 9, 1, 6, 9, 9
Offset: 0

Views

Author

N. J. A. Sloane, Jul 29 2019

Keywords

Comments

This is the decimal expansion of 1/x^2 where x is the constant defined in A309211.

Examples

			.1122528288730582219511299311388265401208...
		

Crossrefs

Extensions

More terms from Daniel Suteu, Jul 30 2019

A309206 a(n) = (2*n)!/A309205(n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 1, 1, 13, 19, 5, 1, 221, 1, 1, 1, 1, 1, 13, 17, 5, 1, 47, 4913, 29, 7, 11, 53, 1, 47, 325, 13, 1147, 41, 1, 1, 41, 1081, 11, 1, 5, 1, 1, 83, 1, 1, 133, 1, 2491, 97, 5, 103, 61, 1, 1, 19, 226493, 1, 1, 1, 5, 31, 1, 1, 1, 1271, 289
Offset: 0

Views

Author

N. J. A. Sloane, Jul 28 2019, following a suggestion from Bill Gosper

Keywords

Comments

Bill Gosper points out that this is a better fingerprint for the series than A309205.

Crossrefs

Programs

  • Mathematica
    F[n_] := Module[{p}, p = 1 + O[x]; For[k=2, k <= n, k++, p = Cos[x p]]; p];
    seq[n_] := Module[{v}, v = CoefficientList[F[n], x]; Table[(2(k - 1))!/ Denominator[v[[2k - 1]]], {k, 1, n}]];
    seq[71] (* Jean-François Alcover, Aug 27 2019, from PARI *)
  • PARI
    \\ here F(n) gives n terms of power series.
    F(n)={my(p=1+O(x)); for(k=2, n, p=cos(x*p)); p}
    seq(n)={my(v=Vec(F(n))); vector(n, k, (2*(k-1))!/denominator(v[2*k-1]))} \\ Andrew Howroyd, Aug 17 2019

Extensions

Terms a(31) and beyond from Andrew Howroyd, Aug 17 2019

A309209 Continued fraction expansion of the negation of the constant defined by A265011 (among other formulas, this is Sum_{k >= 1} arctan((-1)^k/k)).

Original entry on oeis.org

-1, 2, 36, 1, 40, 1, 94, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 29 2019; definition corrected Jul 30 2019 (Thanks to Jianing Song for pointing out that something was wrong.)

Keywords

Crossrefs

Cf. A265011.

Extensions

Name corrected by Jianing Song, Aug 30 2019
Showing 1-7 of 7 results.