A143601 Number of labeled odd-degree trees with 2n+1 nodes.
1, 1, 13, 541, 47545, 7231801, 1695106117, 567547087381, 257320926233329, 151856004814953841, 113144789723082206461, 103890621918675777804301, 115270544419577901796226473, 152049571406030636219959644841
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x^2/2! + 13*x^4/4! + 541*x^6/6! + 47545*x^8/8! + ... The e.g.f. of A007106 (a bisection of A058014) is given by: sqrt(A(x)^2 - 1) = x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + 686080*x^9/9! + ... The e.g.f. of A058014 is given by: F(x) = 1 + x + x^2/2! + 4*x^3/3! + 13*x^4/4! + 96*x^5/5! + 541*x^6/6! + ... where A(x) = [F(x) + F(-x)]/2 and exp(x*A(x)) = F(x). The e.g.f. of A143600 is given by: G(x) = 1 + x + 5*x^2/2! + 25*x^3/3! + 249*x^4/4! + 2561*x^5/5! + ... where A(2x) = [G(x)/G(-x) + G(-x)/G(x)]/2.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..211
Programs
-
Mathematica
Table[(2*n)!*CoefficientList[1/x*InverseSeries[Series[x/Cosh[x],{x,0,41}],x],x][[2*n+1]],{n,0,20}] (* Vaclav Kotesovec, Jan 10 2014 *)
-
PARI
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=cosh(x*A));n!*polcoeff(A,n)}
-
PARI
{a(n)=(2*n)!*polcoeff(cosh(x+x*O(x^(2*n)))^(2*n+1)/(2*n+1),2*n)} \\ Paul D. Hanna, Aug 29 2008
-
PARI
{a(n) = sum(k=0,n, binomial(2*n+1,k) * (2*n+1-2*k)^(2*n) / ((2*n+1) * 2^(2*n)) )} for(n=0,30, print1(a(n),", ")) \\ Paul D. Hanna, Feb 19 2024
Formula
E.g.f. A(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! satisfies the following formulas.
(1) A(x) = cosh(x*A(x)).
(2) A(x) = (1/x)*Series_Reversion( x/cosh(x) ).
(3) sqrt(A(x)^2 - 1) = e.g.f. of A007106.
(4) exp(x*A(x)) = A(x) + sqrt(A(x)^2-1) = e.g.f. of A058014.
(5) A(x) = [F(x) + F(-x)]/2 where F(x) = exp(x*[F(x) + 1/F(x)]/2) = e.g.f. of A058014.
(6) A(2*x) = [G(x)/G(-x) + G(-x)/G(x)]/2 where G(x) = exp(x*G(x)/G(-x)) = e.g.f. of A143600.
From Paul D. Hanna, Aug 29 2008: (Start)
(7) A(x/cosh(x)) = cosh(x).
(8) a(n) = (2n)!*[x^(2n)] cosh(x)^(2n+1)/(2n+1). (End)
(9) a(n) = Sum_{k=0..n} binomial(2*n+1,k) * (2*n+1 - 2*k)^(2*n) / ((2*n+1) * 2^(2*n)). [See formula by Christophe Vignat in A309204.] - Paul D. Hanna, Feb 19 2024
a(n) ~ 2^(2*n) * n^(2*n-1) * (s^2-1)^(n+1/2) / exp(2*n), where s = 1.810170580698977274512829... is the root of the equation sqrt(s^2-1) * log(s + sqrt(s^2-1)) = s. - Vaclav Kotesovec, Jan 10 2014
Radius of convergence r = 0.66274341934918158097474... = 1/sqrt(s^2-1) and A(r) = s (given above) satisfy r = 1/sinh(r*A(r)) and A(r) = cosh(r*A(r)). - Paul D. Hanna, Mar 04 2024
Extensions
Edited by Paul D. Hanna, May 27 2009
Comments