A309210 Number of main classes of extended self-orthogonal diagonal Latin squares of order n.
1, 0, 0, 1, 1, 0, 5, 23, 18865, 33240
Offset: 1
Examples
The diagonal Latin square 0 1 2 3 4 5 6 7 8 9 1 2 0 4 5 7 9 8 6 3 5 0 1 6 3 9 8 2 4 7 9 3 5 8 2 1 7 4 0 6 4 6 3 5 7 8 0 9 2 1 8 4 6 9 1 3 2 5 7 0 7 8 9 0 6 4 5 1 3 2 2 9 4 7 8 0 3 6 1 5 6 5 7 1 0 2 4 3 9 8 3 7 8 2 9 6 1 0 5 4 has the orthogonal diagonal Latin square 0 1 2 3 4 5 6 7 8 9 3 5 9 8 6 2 0 1 4 7 4 3 8 7 2 1 9 0 5 6 6 9 3 4 8 0 1 2 7 5 7 2 0 1 9 3 5 8 6 4 2 0 1 5 7 6 4 9 3 8 8 6 4 2 0 9 7 5 1 3 1 7 6 0 5 4 8 3 9 2 9 8 5 6 1 7 3 4 2 0 5 4 7 9 3 8 2 6 0 1 from the same main class.
Links
- E. I. Vatutin, Discussion about properties of diagonal Latin squares (in Russian)
- E. I. Vatutin, About the lower bound of number of ESODLS of order 10 (in RUssian).
- E. I. Vatutin, List of all main classes of extended self-orthogonal diagonal Latin squares of orders 1-8.
- E. I. Vatutin, List of all main classes of extended self-orthogonal diagonal Latin squares of order 9.
- E. I. Vatutin, List of all main classes of extended self-orthogonal diagonal Latin squares of order 10.
- Eduard I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- E. Vatutin and A. Belyshev, Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597.
- Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- Eduard Vatutin and Oleg Zaikin, Classification of Cells Mapping Schemes Related to Orthogonal Diagonal Latin Squares of Small Order, Supercomputing, Russian Supercomputing Days (RuSCDays 2023) Rev. Selected Papers Part II, LCNS Vol. 14389, Springer, Cham, 21-34.
- Index entries for sequences related to Latin squares and rectangles
Extensions
a(9) added by Eduard I. Vatutin, Dec 08 2020
a(10) added by Eduard I. Vatutin, Oleg S. Zaikin, Jan 30 2025
Comments