A309284 a(n) is the smallest odd composite k such that prime(n)^((k-1)/2) == -1 (mod k) and b^((k-1)/2) == 1 (mod k) for every natural b < prime(n).
3277, 5173601, 2329584217, 188985961, 5113747913401, 30990302851201, 2528509579568281, 5189206896360728641, 12155831039329417441
Offset: 1
Programs
-
PARI
isok(n,k) = (k%2==1) && !isprime(k) && Mod(prime(n), k)^((k-1)/2) == Mod(-1, k) && !for(b=2, prime(n)-1, if(Mod(b, k)^((k-1)/2) != Mod(1, k), return(0))); a(n) = for(k=9, oo, if(isok(n, k), return(k))); \\ Daniel Suteu, Jul 22 2019
Formula
According to the data, b^((a(n)-1)/2) == (b / a(n)) (mod a(n)) for every natural b <= prime(n), where (x / y) is the Jacobi symbol.
Extensions
a(5)-a(9) from Amiram Eldar, Jul 21 2019
Comments