cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A309284 a(n) is the smallest odd composite k such that prime(n)^((k-1)/2) == -1 (mod k) and b^((k-1)/2) == 1 (mod k) for every natural b < prime(n).

Original entry on oeis.org

3277, 5173601, 2329584217, 188985961, 5113747913401, 30990302851201, 2528509579568281, 5189206896360728641, 12155831039329417441
Offset: 1

Views

Author

Thomas Ordowski, Jul 21 2019

Keywords

Comments

a(n) is an Euler pseudoprime to base 2, so it is also a Fermat pseudoprime to base 2.
This sequence is analogous to the sequence A000229 of primes.
Conjecture: the smallest quadratic non-residue modulo a(n) is prime(n), i.e., A020649(a(n)) = prime(n).
a(10) <= 41154189126635405260441. - Daniel Suteu, Jul 22 2019

Crossrefs

Programs

  • PARI
    isok(n,k) = (k%2==1) && !isprime(k) && Mod(prime(n), k)^((k-1)/2) == Mod(-1, k) && !for(b=2, prime(n)-1, if(Mod(b, k)^((k-1)/2) != Mod(1, k), return(0)));
    a(n) = for(k=9, oo, if(isok(n, k), return(k))); \\ Daniel Suteu, Jul 22 2019

Formula

According to the data, b^((a(n)-1)/2) == (b / a(n)) (mod a(n)) for every natural b <= prime(n), where (x / y) is the Jacobi symbol.

Extensions

a(5)-a(9) from Amiram Eldar, Jul 21 2019
Showing 1-1 of 1 results.