cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309287 Square array T(v, m), read by antidiagonals, for the Rogel-Klee arithmetic function: number of positive integers h in the set [m] for which gcd(h, m) is v-th-power-free, i.e., gcd(h, m) is not divisible by any v-th power of an integer > 1 (with v, m >= 1).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 4, 3, 3, 2, 1, 2, 5, 4, 3, 2, 1, 6, 6, 5, 4, 3, 2, 1, 4, 7, 6, 5, 4, 3, 2, 1, 6, 6, 7, 6, 5, 4, 3, 2, 1, 4, 8, 7, 7, 6, 5, 4, 3, 2, 1, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 4, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 12, 9, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 6, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Petros Hadjicostas, Jul 21 2019

Keywords

Comments

For fixed v >= 1, T(v, .) is a multiplicative arithmetic function with T(v, 1) = 1; T(v, p^e) = p^e, if e < v; and T(v, p^e) = p^e - p^(e-v) if e >= v (where p is a prime >= 2).
Here, T(v=1, m) = phi(m) is the number of arithmetic progressions (s*m + k: s >= 0), k = 1, ..., m, that contain infinitely many primes (by Dirichlet's theorem). For v >= 2, T(v, m) is the number of these arithmetic progressions that contain infinitely many v-th-power-free numbers.
In Section 6 of his paper, Cohen (1959) mentions that this function was introduced by Rogel (1900) in an article published in a Bohemian journal. Roger's (1900) paper is a continuation of Rogel (1897) and the two should be read together.
McCarthy (1958) uses the asymptotic result given in the FORMULA section below to prove that the probability that the GCD of two positive integers is v-th-power-free is 1/zeta(2*v).

Examples

			Table for T(v, m) (with rows v >= 1 and columns m >= 1) begins as follows:
  v=1: 1, 1, 2, 2, 4, 2, 6, 4, 6,  4, 10,  4, 12,  6,  8,  8, ...
  v=2: 1, 2, 3, 3, 5, 6, 7, 6, 8, 10, 11,  9, 13, 14, 15, 12, ...
  v=3: 1, 2, 3, 4, 5, 6, 7, 7, 9, 10, 11, 12, 13, 14, 15, 14, ...
  v=4: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, ...
  v=5: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
  v=6: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
  v=7: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
  ...
Clearly, lim_{v -> infinity} T(v, m) = m.
		

References

  • Paul J. McCarthy, Introduction to Arithmetical Functions, Springer-Verlag, 1986; see pp. 38-40 and 69.

Crossrefs

A000010 (row v = 1 is Euler's phi function), A063659 (row v = 2 is Haviland's function), A254926 (row v = 3).

Programs

  • PARI
    /* Modification of Michel Marcus's program from sequence A254926: */
    T(v, m) = {f = factor(m); for (i=1, #f~, if ((e=f[i, 2])>=v, f[i, 1] = f[i, 1]^e - f[i, 1]^(e-v); f[i, 2]=1); ); factorback(f); }
    /* Print the first 40 terms of each of the first 10 rows: */
    { for (v=1, 10, for (m=1, 40, print1(T(v, m), ", "); ); print(); ); }

Formula

T(v, m) = m * Product_{p prime and p^v|m} (1 - p^(-v)) for v, m >= 1.
T(v, m) = Sum_{n >= 1} mu(n) * [m, n^v] * (m/n^v), where [m, n^v] = 1 when m is a multiple of n^v, and = 0 otherwise. [This is Eq. (53) in Rogel (1900) and Eq. (6.1) in Cohen (1959).]
Dirichlet g.f. for row v: Sum_{m >= 1} T(v, m)/m^s = zeta(s-1)/zeta(v*s) for Re(s) > 1.
Asymptotics: Sum_{m = 1..n} T(v, m) = n^2/(2*zeta(2*v)) + O(n) for v >= 2 and = n^2/(2*zeta(2)) + O(n*log(n)) for v = 1 (for Euler's phi-function).
Analog of Fermat's theorem: if gcd(a, m) = 1 with a >= 1, then m/gcd(a^T(v, m) - 1, m) is v-th-power-free. (For v = 1, this means m/gcd(a^T(v=1, m) - 1, m) = 1.)
T(v, m^v)/m^v = Sum_{d|m} mu(d)/d^v for m, v >= 1. (It generalizes the formula phi(m)/m = Sum_{d|m} mu(d)/d since phi(m) = T(v=1, m).)