cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309307 Number of unitary divisors of n (excluding 1).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 7, 1, 1, 3, 3, 3, 3, 1, 3, 3, 3, 1, 7, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 7, 1, 3, 3, 1, 3, 7, 1, 3, 3, 7, 1, 3, 1, 3, 3, 3, 3, 7, 1, 3, 1, 3, 1, 7, 3, 3, 3, 3, 1, 7, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 21 2019

Keywords

Comments

Also the number of squarefree divisors > 1.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x] // Rest
    Table[2^PrimeNu[n] - 1, {n, 1, 100}]

Formula

G.f.: Sum_{k>=2} mu(k)^2*x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)*(zeta(s)/zeta(2*s) - 1).
a(n) = 2^omega(n) - 1.
a(n) = A000225(A001221(n)) = A034444(n) - 1.
Sum_{k=1..n} a(k) ~ 6*n*(log(n) + 2*gamma - 1 - Pi^2/6 - 12*zeta'(2)/Pi^2) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 16 2019
a(n) = -1 + Sum_{d|n} mu(d)^2. - Wesley Ivan Hurt, Feb 04 2022