A366973 Smallest odd prime p such that n^((p+1)/2) == n (mod p).
3, 3, 7, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 13, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 11, 3, 3, 5, 3, 3, 5, 3, 3, 11, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 13, 3, 3, 5, 3, 3, 13, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 5, 3, 3, 17, 3, 3
Offset: 0
Keywords
Links
- Robin Visser, Table of n, a(n) for n = 0..10000
Programs
-
Maple
f:= proc(n) local p; p:= 2; do p:= nextprime(p); if n &^ ((p+1)/2) - n mod p = 0 then return p fi od end proc: map(f, [$0..100]); # Robert Israel, Oct 30 2023
-
Mathematica
a[n_] := Module[{p = 3}, While[PowerMod[n, (p + 1)/2, p] != Mod[n, p], p = NextPrime[p]]; p]; Array[a, 100, 0] (* Amiram Eldar, Oct 30 2023 *)
-
PARI
a(n) = my(p=3); while(Mod(n, p)^((p+1)/2) != n, p=nextprime(p+1)); p; \\ Michel Marcus, Oct 30 2023
-
PARI
a(n) = for(i=2, oo, my(p=prime(i)); for(j=0, (p-1)/2, if(n%p==j^2%p, return(p)))) \\ Charles L. Hohn, Sep 27 2024
Extensions
More terms from Amiram Eldar, Oct 30 2023
Comments