cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309324 Expansion of Sum_{k>=1} psi(k) * x^k/(1 + x^k), where psi = Dedekind psi function (A001615).

Original entry on oeis.org

1, 2, 5, 2, 7, 10, 9, 2, 17, 14, 13, 10, 15, 18, 35, 2, 19, 34, 21, 14, 45, 26, 25, 10, 37, 30, 53, 18, 31, 70, 33, 2, 65, 38, 63, 34, 39, 42, 75, 14, 43, 90, 45, 26, 119, 50, 49, 10, 65, 74, 95, 30, 55, 106, 91, 18, 105, 62, 61, 70, 63, 66, 153, 2, 105, 130, 69, 38, 125, 126, 73
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 23 2019

Keywords

Comments

Dirichlet convolution of sum of odd divisors function with characteristic function of squarefree numbers.

Crossrefs

Programs

  • Mathematica
    nmax = 71; CoefficientList[Series[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k]  x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[MoebiusMu[n/d]^2 Plus @@ Select[Divisors@ d, OddQ], {d, Divisors[n]}], {n, 1, 71}]
    f[2, e_] := 2; f[p_, e_] := (p^e*(p+1)-2)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 01 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 2, (f[i,1]^f[i,2]*(f[i,1]+1)-2)/(f[i,1]-1)));} \\ Amiram Eldar, Nov 06 2022

Formula

a(n) = Sum_{d|n} (-1)^(n/d+1) * psi(d).
a(n) = Sum_{d|n} mu(n/d)^2 * A000593(d).
Multiplicative with a(2^e) = 2, and a(p^e) = (p^e*(p+1)-2)/(p-1) for odd primes p. - Amiram Eldar, Dec 01 2020
Sum_{k=1..n} a(k) ~ (5/8) * n^2. - Amiram Eldar, Nov 06 2022