A309332 Number of ways the n-th triangular number T(n) = A000217(n) can be written as the sum of two positive triangular numbers.
0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 3, 0, 0, 1, 1, 3, 0, 0, 1, 0, 1, 0, 0, 3, 1, 1, 0, 1, 3, 0, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 0, 3, 1, 1, 1, 0, 3, 1, 1, 0, 0, 2, 0, 1, 1, 1, 1, 1, 5, 0, 1, 1, 0, 1, 0, 0, 3, 0, 3, 1, 0, 3, 1, 3, 1, 3, 3, 0, 1, 0, 0, 3, 0, 2, 0, 1
Offset: 1
Keywords
Examples
a(3) = 1: 2*3/2 + 2*3/2 = 3*4/2. a(21) = 2: 6*7/2 + 20*21/2 = 12*13/2 + 17*18/2 = 21*22/2. a(23) = 3: 9*10/2 + 21*22/2 = 11*12/2 + 20*21/2 = 14*15/2 + 18*19/2 = 23*24/2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Maple
a:= proc(n) local h, j, r, w; h, r:= n*(n+1), 0; for j from n-1 by -1 do w:= j*(j+1); if 2*w
-
Mathematica
a[n_] := Module[{h = n(n+1), j, r = 0, w}, For[j = n-1, True, j--, w = j(j+1); If[2w < h, Break[]]; If[ IntegerQ[Sqrt[4(h-w)+1]], r++]]; r]; Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Nov 16 2022, after Alois P. Heinz *)
Comments