A309352 Number of free trees of n vertices whose automorphisms are a 2-group.
1, 1, 1, 1, 1, 2, 4, 6, 13, 26, 56, 122, 278, 634, 1494, 3540, 8542, 20774, 51116, 126648, 316452, 795510, 2012476, 5117613, 13079677, 33576706, 86555074, 223965633, 581573118, 1515084771, 3959038337, 10374543765, 27258298145
Offset: 0
Keywords
Examples
a(4)=1 is path-4 having automorphism group S2 (reverse the path), and excludes star-4 which is S3 order 6 (permute the leaves). a(5)=2 excludes star-5 which is S4 on the leaves.
Links
- Kevin Ryde, Table of n, a(n) for n = 0..2213
Programs
-
Maple
h:= proc(n, m, t) option remember; `if`(m=0, binomial(n+t, t), `if`(n=0, 0, add(h(n-1, m-j, t+1), j=1..min(2, m)))) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*h(g(i), j, 0), j=0..n/i))) end: g:= n-> `if`(n<2, n, b(n-1$2)): a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n/2)+ `if`(n::even, (t-> t*(t+1)/2)(g(n/2)), 0)): seq(a(n), n=0..35); # Alois P. Heinz, Aug 01 2019
-
Mathematica
h[n_, m_, t_] := h[n, m, t] = If[m == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n-1, m-j, t+1], {j, 1, Min[2, m]}]]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[b[n - i j, i-1] h[g[i], j, 0], {j, 0, n/i}]]]; g[n_] := If[n < 2, n, b[n-1, n-1]]; a[n_] := If[n == 0, 1, g[n] - Sum[g[j] g[n-j], {j, 0, n/2}] + If[EvenQ[n], #(#+1)/2&[g[n/2]], 0]]; a /@ Range[0, 35] (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz *)
Comments