cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309352 Number of free trees of n vertices whose automorphisms are a 2-group.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 6, 13, 26, 56, 122, 278, 634, 1494, 3540, 8542, 20774, 51116, 126648, 316452, 795510, 2012476, 5117613, 13079677, 33576706, 86555074, 223965633, 581573118, 1515084771, 3959038337, 10374543765, 27258298145
Offset: 0

Views

Author

Kevin Ryde, Jul 24 2019

Keywords

Comments

A 2-group is a group with order some power 2^k. In free tree automorphisms, this means at a given vertex an adjacent subtree can appear there twice, but not three or more times.
Free trees are counted from rooted trees in the usual way by rooting at a centroid. This is in the generating function of A000055 (all free) from A000081 (all rooted). From all rooted trees, subtract the unbalanced where root not centroid, and allow bicentroidals with same halves. a(n) follows this way from A248869 rooted 2-groups. With root as centroid, the free automorphisms are all and only the rooted automorphisms, except swap halves of a bi-centroidal. Such a swap can be part of a 2-group, so same halves allowed.

Examples

			a(4)=1 is path-4 having automorphism group S2 (reverse the path), and excludes star-4 which is S3 order 6 (permute the leaves).  a(5)=2 excludes star-5 which is S4 on the leaves.
		

Crossrefs

Programs

  • Maple
    h:= proc(n, m, t) option remember; `if`(m=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, m-j, t+1), j=1..min(2, m))))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*h(g(i), j, 0), j=0..n/i)))
        end:
    g:= n-> `if`(n<2, n, b(n-1$2)):
    a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n/2)+
            `if`(n::even, (t-> t*(t+1)/2)(g(n/2)), 0)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Aug 01 2019
  • Mathematica
    h[n_, m_, t_] := h[n, m, t] = If[m == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n-1, m-j, t+1], {j, 1, Min[2, m]}]]];
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[b[n - i j, i-1] h[g[i], j, 0], {j, 0, n/i}]]];
    g[n_] := If[n < 2, n, b[n-1, n-1]];
    a[n_] := If[n == 0, 1, g[n] - Sum[g[j] g[n-j], {j, 0, n/2}] + If[EvenQ[n], #(#+1)/2&[g[n/2]], 0]];
    a /@ Range[0, 35] (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz *)

Formula

a(n) = A248869(n) - (Sum_{i=1..floor(n/2)} A248869(i)*A248869(n-i)) + (binomial(A248869(n/2)+1,2) if n even), for n>=1.
G.f.: g(x) = 1 + T(x) - T^2(x)/2 + T(x^2)/2, where T(x) = x + x^2 + 2*x^3 + 3*x^4 + ... is the g.f. for A248869.