cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309355 Even numbers k such that k! is divisible by k*(k+1)/2.

Original entry on oeis.org

8, 14, 20, 24, 26, 32, 34, 38, 44, 48, 50, 54, 56, 62, 64, 68, 74, 76, 80, 84, 86, 90, 92, 94, 98, 104, 110, 114, 116, 118, 120, 122, 124, 128, 132, 134, 140, 142, 144, 146, 152, 154, 158, 160, 164, 168, 170, 174, 176, 182, 184, 186, 188, 194, 200, 202, 204, 206
Offset: 1

Views

Author

Gerhard Palme, Jul 25 2019

Keywords

Comments

Even terms in A060462.
And A071904 are the successors of a(n).
Even numbers that are not a prime - 1. That is, even numbers not in A006093. - Terry D. Grant, Oct 31 2020

Examples

			8! = 40320 is divisible by 8*9/2 = 36.
14! is divisible by 14*15/2.
		

References

  • J. D. E. Konhauser et al., Which Way Did The Bicycle Go?, Problem 98, pp. 29; 145-146, MAA Washington DC, 1996.
  • Die WURZEL - Zeitschrift für Mathematik, 53. Jahrgang, Juli 2019, S. 171, WURZEL-Aufgabe 2019-36 von Gerhard Dietel, Regensburg.

Crossrefs

Essentially the same as A186193.
Cf. A006093.

Programs

  • Magma
    [k: k in [2..250]|IsEven(k) and Factorial(k) mod Binomial(k+1,2) eq 0]; // Marius A. Burtea, Jul 28 2019
    
  • Mathematica
    Complement[Table[2 n, {n, 1, 103}], Table[EulerPhi[Prime[n]], {n, 1, 103}]] (* Terry D. Grant, Oct 31 2020 *)
  • PARI
    forcomposite(c=4,10^3,if(c%2==1,print1(c-1,", "))); \\ Joerg Arndt, Jul 25 2019
    
  • Python
    from sympy import primepi
    def A309355(n):
        if n == 1: return 8
        m, k = n, primepi(n) + n + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n + (k>>1)
        return m-1 # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A071904(n) - 1.