cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Gerhard Palme

Gerhard Palme's wiki page.

Gerhard Palme has authored 2 sequences.

A309355 Even numbers k such that k! is divisible by k*(k+1)/2.

Original entry on oeis.org

8, 14, 20, 24, 26, 32, 34, 38, 44, 48, 50, 54, 56, 62, 64, 68, 74, 76, 80, 84, 86, 90, 92, 94, 98, 104, 110, 114, 116, 118, 120, 122, 124, 128, 132, 134, 140, 142, 144, 146, 152, 154, 158, 160, 164, 168, 170, 174, 176, 182, 184, 186, 188, 194, 200, 202, 204, 206
Offset: 1

Author

Gerhard Palme, Jul 25 2019

Keywords

Comments

Even terms in A060462.
And A071904 are the successors of a(n).
Even numbers that are not a prime - 1. That is, even numbers not in A006093. - Terry D. Grant, Oct 31 2020

Examples

			8! = 40320 is divisible by 8*9/2 = 36.
14! is divisible by 14*15/2.
		

References

  • J. D. E. Konhauser et al., Which Way Did The Bicycle Go?, Problem 98, pp. 29; 145-146, MAA Washington DC, 1996.
  • Die WURZEL - Zeitschrift für Mathematik, 53. Jahrgang, Juli 2019, S. 171, WURZEL-Aufgabe 2019-36 von Gerhard Dietel, Regensburg.

Crossrefs

Essentially the same as A186193.
Cf. A006093.

Programs

  • Magma
    [k: k in [2..250]|IsEven(k) and Factorial(k) mod Binomial(k+1,2) eq 0]; // Marius A. Burtea, Jul 28 2019
    
  • Mathematica
    Complement[Table[2 n, {n, 1, 103}], Table[EulerPhi[Prime[n]], {n, 1, 103}]] (* Terry D. Grant, Oct 31 2020 *)
  • PARI
    forcomposite(c=4,10^3,if(c%2==1,print1(c-1,", "))); \\ Joerg Arndt, Jul 25 2019
    
  • Python
    from sympy import primepi
    def A309355(n):
        if n == 1: return 8
        m, k = n, primepi(n) + n + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n + (k>>1)
        return m-1 # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A071904(n) - 1.

A152826 Numbers that are divisible by the product of the digit-sums of their neighbors.

Original entry on oeis.org

105, 672, 1200, 1530, 1560, 2145, 2907, 3060, 3432, 4704, 5814, 6006, 6120, 6240, 8721, 9570, 10710, 10752, 10920, 11154, 11628, 11700, 12240, 12441, 13260, 14535, 15015, 16302, 17442, 19656, 20163, 20280, 20832, 21420, 22620, 23256, 23400
Offset: 1

Author

Gerhard Palme (GerhardPalme(AT)gmx.de), Dec 13 2008

Keywords

Comments

All terms are multiples of 3. Up to 10^8 there are exactly 6865 odd and 25055 even terms. - Zak Seidov, May 11 2013
Note the linear patterns in my jpg file. - Zak Seidov, May 11 2013
Subsequences include 10^(2+6k)+5, 10^(3+16k)+530, 10^(3+6k)+560, 2*10^(3+6k)+145, 2*10^(3+144k)+907, etc. - Robert Israel, Jan 05 2016

References

  • Die WURZEL - Zeitschrift für Mathematik, 42. Jahrgang, Dezember 2008, Seite 287, WURZEL-Aufgabe sigma55 von Reiner Moewald, Germersheim.

Crossrefs

Cf. A007953.

Programs

  • Java
    class Program { static void Main(string[] args) { for (int i = 1; i < 1000000; i++) { int q1 = quersumme(i - 1); int q2 = quersumme(i + 1); if ((double)i % ((double)q1 * (double)q2) == 0) { Console.WriteLine(i); } } Console.ReadLine(); } static int quersumme(int num) { string n = num.ToString(); int retval = 0; int i = n.Length - 1; while (i >= 0) { retval += Int32.Parse(n.Substring(i, 1)); i--; } return retval; } }
  • Maple
    ds:= n -> convert(convert(n,base,10),`+`):
    filter:= n -> n mod (ds(n-1)*ds(n+1))=0:
    select(filter, 3*[$1..10000]); # Robert Israel, Jan 05 2016
  • Mathematica
    Select[Range[50000], Divisible[#,Total[IntegerDigits[#-1]] * Total[IntegerDigits[#+1]]]&] (* Harvey P. Dale, Dec 11 2010 *)