A309369 a(n) = Sum_{d|n} phi(n/d)^d, where phi = Euler totient function (A000010).
1, 2, 3, 4, 5, 8, 7, 10, 15, 22, 11, 34, 13, 44, 105, 42, 17, 116, 19, 314, 357, 112, 23, 426, 1045, 158, 747, 1474, 29, 5290, 31, 594, 3069, 274, 24185, 6082, 37, 344, 9945, 67922, 41, 63542, 43, 12170, 303225, 508, 47, 74834, 279979, 1050022, 135201, 29098, 53, 309872, 4294345
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
Table[Sum[EulerPhi[n/d]^d, {d, Divisors[n]}], {n, 1, 55}] nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 - EulerPhi[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest nmax = 55; CoefficientList[Series[-Log[Product[(1 - EulerPhi[k] x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
-
PARI
a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(gcd(k, n)-1)); \\ Seiichi Manyama, Mar 13 2021
Formula
G.f.: Sum_{k>=1} phi(k)*x^k/(1 - phi(k)*x^k).
L.g.f.: -log(Product_{k>=1} (1 - phi(k)*x^k)^(1/k)).
a(p) = p for p prime.
a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^(gcd(k, n) - 1). - Seiichi Manyama, Mar 13 2021