cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309391 a(n) = gcd(n, A064169(n-2)) for n > 2.

Original entry on oeis.org

3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 1, 1, 29, 1, 31, 1, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 1, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 1, 1, 83, 1, 1, 1, 1, 11, 89, 1
Offset: 3

Views

Author

Amiram Eldar and Thomas Ordowski, Jul 28 2019

Keywords

Comments

Probably, there are no composite terms in this sequence.
For n > 2, a(n) = gcd(n, A001008(n-1)).
By Wolstenholme's theorem, if p is an odd prime, then a(p) = p.
Conjecture: for n > 2, if a(n) = n, then n is a prime.
If so, then there are no pseudoprimes n such that a(n) = n.
Composite numbers m <> p^2 for which a(m) > 1 are 88, 1290, 9339, ...

Examples

			a(25) = gcd(25, A064169(25-2)) = gcd(25, 325333835) = 5,
a(25) = gcd(25, A001008(25-1)) = gcd(25, 1347822955) = 5.
It should be noted that a(88) = 11, a(1290) = 43, a(9339) = 11, ...
		

Crossrefs

Cf. A001008, A002805, A007406 (see our comment), A064169, A065091, A089026, A309397.

Programs

  • Magma
    [Gcd(k, Numerator(a)-Denominator(a)) where a is HarmonicNumber(k-2):k in [3..90]]; // Marius A. Burtea, Jul 29 2019
  • Maple
    H:= 0:
    for n from 3 to 100 do
      H:= H + 1/(n-2);
      A[n]:= igcd(n, numer(H)-denom(H));
    od:
    seq(A[i],i=3..100); # Robert Israel, Aug 04 2019
  • Mathematica
    a[n_] := GCD[n, Numerator[(h = HarmonicNumber[n-2])] - Denominator[h]]; Array[a, 81, 3]

Formula

a(p) = p for every odd prime p.
a(p^2) = p iff p > 3 is a prime.
Note that a(n) >= A089026(n) for n > 2.