A309397 a(n) = gcd(n^2, A001008(n-1)) for n > 1.
1, 3, 1, 25, 1, 49, 1, 1, 1, 121, 1, 169, 1, 1, 1, 289, 1, 361, 1, 1, 1, 529, 1, 5, 1, 1, 1, 841, 1, 961, 1, 1, 1, 1, 1, 1369, 1, 1, 1, 1681, 1, 1849, 1, 1, 1, 2209, 1, 7, 1, 1, 1, 2809, 1, 1, 1, 1, 1, 3481, 1, 3721, 1, 1, 1, 1, 1, 4489, 1, 1, 1, 5041, 1, 5329
Offset: 2
Keywords
Examples
a(11) = gcd(11^2, A001008(11-1)) = gcd(121, 7381) = 121.
Links
- R. Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862--2012), arXiv:1111.3057 [math.NT], 2011.
- Eric Weisstein's World of Mathematics, Wolstenholme's Theorem.
- Wikipedia, Wolstenholme's theorem.
Programs
-
Magma
[Gcd(k^2, Numerator(HarmonicNumber(k-1))):k in [2..80]]; // Marius A. Burtea, Jul 28 2019
-
Mathematica
a[n_] := GCD[n^2, Numerator[HarmonicNumber[n-1]]]; Array[a, 72, 2]
-
Python
from sympy import gcd, harmonic def A309387(n): return gcd(n**2,harmonic(n-1).p) # Chai Wah Wu, Jul 31 2019
Formula
a(n) = A309391(n) for composite n.
a(p) = p^2 for every prime p > 3.
a(p^2) = p iff p > 3 is a prime.
Comments