cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309397 a(n) = gcd(n^2, A001008(n-1)) for n > 1.

Original entry on oeis.org

1, 3, 1, 25, 1, 49, 1, 1, 1, 121, 1, 169, 1, 1, 1, 289, 1, 361, 1, 1, 1, 529, 1, 5, 1, 1, 1, 841, 1, 961, 1, 1, 1, 1, 1, 1369, 1, 1, 1, 1681, 1, 1849, 1, 1, 1, 2209, 1, 7, 1, 1, 1, 2809, 1, 1, 1, 1, 1, 3481, 1, 3721, 1, 1, 1, 1, 1, 4489, 1, 1, 1, 5041, 1, 5329
Offset: 2

Views

Author

Amiram Eldar and Thomas Ordowski, Jul 28 2019

Keywords

Comments

By Wolstenholme's theorem, if p > 3 is prime, then a(p) = p^2.
Conjecture: for n > 3, if a(n) = n^2, then n is a prime.
Note: the weak pseudoprimes n such that a(n) = n are not known.
Composite numbers m <> p^2 for which a(m) > 1 are the same as in A309391: 88, 1290, 9339, ...

Examples

			a(11) = gcd(11^2, A001008(11-1)) = gcd(121, 7381) = 121.
		

Crossrefs

Cf. A001008, A007406 (see our comment), A309391.

Programs

  • Magma
    [Gcd(k^2, Numerator(HarmonicNumber(k-1))):k in [2..80]]; // Marius A. Burtea, Jul 28 2019
    
  • Mathematica
    a[n_] := GCD[n^2, Numerator[HarmonicNumber[n-1]]]; Array[a, 72, 2]
  • Python
    from sympy import gcd, harmonic
    def A309387(n):
        return gcd(n**2,harmonic(n-1).p) # Chai Wah Wu, Jul 31 2019

Formula

a(n) = A309391(n) for composite n.
a(p) = p^2 for every prime p > 3.
a(p^2) = p iff p > 3 is a prime.