A309398 a(n) is the nearest integer to log(log(10^n)).
1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1
Links
- E. Costa, R. Gerbicz and D. Harvey, A search for Wilson primes, arXiv:1209.3436 [math.NT], 2012; Mathematics of Computation, Vol. 83, No. 290 (2014), 3071-3091, DOI:10.1090/S0025-5718-2014-02800-7.
- J. Knauer and J. Richstein, The continuing search for Wieferich primes, Mathematics of Computation, Vol. 74, No. 251 (2005), 1559-1563.
- R. McIntosh, On the converse of Wolstenholme's Theorem, Acta Arithmetica 71 (1995), 381-389.
- R. J. McIntosh and E. L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Mathematics of Computation, Vol. 76, No. 260 (2007), 2087-2094.
Programs
-
Mathematica
Round[Log[Log[10^Range[90]]]] (* Harvey P. Dale, Jan 16 2024 *)
-
PARI
a(n) = round(log(log(10^n)))
Formula
a(n) = round(log(log(10^n))) = log n + O(1).
Comments