A309401 a(n) = A306245(n,n).
1, 1, 3, 43, 5949, 12950796, 586826390263, 669793946192984257, 22558227235537152753501561, 25741074696455818592335996518315259, 1124843928218943684789052411802502269971863691, 2100464404490451025972467064515428575200326254804659324780
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..36
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(k^j*binomial(n-1, j)*b(j, k), j=0..n-1)) end: a:= n-> b(n$2): seq(a(n), n=0..12); # Alois P. Heinz, Jul 28 2019
-
Mathematica
b[0, _] = 1; b[n_, k_] := b[n, k] = Sum[k^j Binomial[n-1, j] b[j, k], {j, 0, n-1}]; a[n_] := b[n, n]; a /@ Range[0, 12] (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz *)
-
Ruby
def ncr(n, r) return 1 if r == 0 (n - r + 1..n).inject(:*) / (1..r).inject(:*) end def A(k, n) ary = [1] (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + k ** j * ncr(i - 1, j) * ary[j]}} ary end def A309401(n) (0..n).map{|i| A(i, i)} end p A309401(20)