A309402 Number T(n,k) of nonempty subsets of [n] whose element sum is divisible by k; triangle T(n,k), n >= 1, 1 <= k <= n*(n+1)/2, read by rows.
1, 3, 1, 1, 7, 3, 3, 1, 1, 1, 15, 7, 5, 3, 3, 2, 2, 1, 1, 1, 31, 15, 11, 7, 7, 5, 4, 3, 3, 3, 2, 2, 1, 1, 1, 63, 31, 23, 15, 13, 11, 9, 7, 7, 6, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1, 127, 63, 43, 31, 25, 21, 19, 15, 14, 12, 11, 10, 9, 9, 8, 8, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1
Offset: 1
Examples
Triangle T(n,k) begins: 1; 3, 1, 1; 7, 3, 3, 1, 1, 1; 15, 7, 5, 3, 3, 2, 2, 1, 1, 1; 31, 15, 11, 7, 7, 5, 4, 3, 3, 3, 2, 2, 1, 1, 1; 63, 31, 23, 15, 13, 11, 9, 7, 7, 6, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1; ...
Links
- Alois P. Heinz, Rows n = 1..50, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, s) option remember; `if`(n=0, add(x^d, d=numtheory[divisors](s)), b(n-1, s)+b(n-1, s+n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, 0)): seq(T(n), n=1..10);
-
Mathematica
b[n_, s_] := b[n, s] = If[n == 0, Sum[x^d, {d, Divisors[s]}], b[n-1, s] + b[n-1, s+n]]; T[n_] := With[{p = b[n, 0]}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]]; Array[T, 10] // Flatten (* Jean-François Alcover, Jan 27 2021, after Alois P. Heinz *)
Comments