cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309427 Number of prime parts in the partitions of n into 5 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 5, 11, 17, 24, 32, 46, 57, 77, 92, 118, 141, 175, 204, 249, 287, 342, 390, 459, 517, 600, 672, 771, 859, 975, 1078, 1214, 1336, 1495, 1636, 1818, 1982, 2190, 2378, 2615, 2830, 3097, 3340, 3641, 3915, 4250, 4557, 4930, 5273, 5687, 6068
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 01 2019

Keywords

Examples

			Figure 1: The partitions of n into 5 parts for n = 10, 11, ..
                                                       1+1+1+1+10
                                                        1+1+1+2+9
                                                        1+1+1+3+8
                                                        1+1+1+4+7
                                                        1+1+1+5+6
                                            1+1+1+1+9   1+1+2+2+8
                                            1+1+1+2+8   1+1+2+3+7
                                            1+1+1+3+7   1+1+2+4+6
                                            1+1+1+4+6   1+1+2+5+5
                                            1+1+1+5+5   1+1+3+3+6
                                1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
                                1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
                                1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
                    1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
                    1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
                    1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
        1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
        1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
        1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
        1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
        1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
        1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
        2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
--------------------------------------------------------------------------
  n  |     10          11          12          13          14        ...
--------------------------------------------------------------------------
a(n) |     17          24          32          46          57        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 08 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) + (PrimePi[j] - PrimePi[j - 1]) + (PrimePi[k] - PrimePi[k - 1]) + (PrimePi[l] - PrimePi[l - 1]) + (PrimePi[n - i - j - k - l] - PrimePi[n - i - j - k - l - 1]), {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]

Formula

a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-1)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} (A010051(i) + A010051(j) + A010051(k) + A010051(l) + A010051(n-i-j-k-l)).