cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A309466 Sum of the prime parts in the partitions of n into 5 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 7, 11, 28, 41, 67, 88, 136, 169, 248, 295, 413, 496, 652, 772, 1001, 1161, 1469, 1697, 2096, 2398, 2923, 3316, 3975, 4501, 5302, 5955, 6953, 7757, 8994, 9988, 11450, 12674, 14427, 15883, 17992, 19741, 22176, 24268, 27149, 29569, 32919
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 03 2019

Keywords

Examples

			The partitions of n into 5 parts for n = 10, 11, ..
                                                       1+1+1+1+10
                                                        1+1+1+2+9
                                                        1+1+1+3+8
                                                        1+1+1+4+7
                                                        1+1+1+5+6
                                            1+1+1+1+9   1+1+2+2+8
                                            1+1+1+2+8   1+1+2+3+7
                                            1+1+1+3+7   1+1+2+4+6
                                            1+1+1+4+6   1+1+2+5+5
                                            1+1+1+5+5   1+1+3+3+6
                                1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
                                1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
                                1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
                    1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
                    1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
                    1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
        1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
        1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
        1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
        1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
        1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
        1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
        2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
--------------------------------------------------------------------------
  n  |     10          11          12          13          14        ...
--------------------------------------------------------------------------
a(n) |     41          67          88         136         169        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 12 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Flatten[IntegerPartitions[n,{5}]],PrimeQ]],{n,0,50}] (* Harvey P. Dale, Dec 31 2021 *)

Formula

a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-1)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} (i * c(i) + j * c(j) + k * c(k) + l * c(l) + (n-i-j-k-l) * c(n-i-j-k-l)), where c is the prime characteristic (A010051).

A309433 Number of prime parts in the partitions of n into 6 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 11, 17, 30, 38, 57, 74, 103, 129, 173, 209, 267, 323, 402, 477, 583, 683, 820, 954, 1125, 1295, 1515, 1727, 1995, 2264, 2590, 2917, 3316, 3713, 4188, 4668, 5229, 5800, 6470, 7140, 7918, 8712, 9618, 10539, 11590, 12655, 13862
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 03 2019

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} (A010051(i) + A010051(j) + A010051(k) + A010051(l) + A010051(m) + A010051(n-i-j-k-l-m)).
Showing 1-2 of 2 results.