cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309440 The number of digits of the greatest product from addends that sum up to 10^n.

Original entry on oeis.org

1, 2, 16, 160, 1591, 15905, 159041, 1590405, 15904042, 159040419, 1590404183, 15904041824, 159040418240, 1590404182399, 15904041823989, 159040418239888, 1590404182398875, 15904041823988748, 159040418239887480, 1590404182398874791, 15904041823988747910, 159040418239887479099
Offset: 0

Views

Author

Lekraj Beedassy, Aug 03 2019

Keywords

Examples

			The greatest product of numbers that sum up to 10 is 2*2*3*3 = 36 which has 2 digits. Thus a(1) = 2.
The greatest product of numbers that sum up to 100 is 2*2*3^(32) ~ 7.4*10^15 which has 16 digits. Hence a(2) = 16.
The greatest product of numbers that sum up to 1000 is 2*2*3^(332) ~ 1.0*10^159 which has 160 digits. Therefore a(3) = 160.
		

Crossrefs

Cf. A000792.

Programs

  • PARI
    a(n) = 1 + floor(log(4)/log(10) + ((10^n-1)/3-1)*log(3)/log(10)); \\ Jinyuan Wang, Aug 03 2019

Formula

a(n) = 1 + floor(log_10(36) + 10*log_10(27)*R_(n-1)), R_k being the k-th repunit, i.e., 111...111 with only digit 1 appearing k times.